List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701514/publications.pdf Version: 2024-02-01

СНІЛІЛС 7НІІ

#	Article	IF	CITATIONS
1	Dramatic and Reversible Waterâ€Induced Stiffening Driven by Phase Separation within Polymer Gels. Advanced Functional Materials, 2022, 32, 2109850.	14.9	20
2	Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics. Macromolecular Rapid Communications, 2022, 43, e2100716.	3.9	9
3	Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites. Nano Research, 2022, 15, 5769-5774.	10.4	10
4	Joule heating of ionic conductors using zero-phase frequency alternating current to suppress electrochemical reactions. Engineering, 2022, , .	6.7	4
5	Fluorinated Poly(ionic liquid) Copolymers as Transparent, Strong, and Versatile Adhesive Materials. ACS Applied Polymer Materials, 2022, 4, 3217-3224.	4.4	6
6	Bioinspired Semicrystalline Dynamic Ionogels with Adaptive Mechanics and Tactile Sensing. ACS Applied Materials & Interfaces, 2022, 14, 20132-20138.	8.0	5
7	Equilibrium and non-equilibrium molecular dynamics approaches for the linear viscoelasticity of polymer melts. Physics of Fluids, 2022, 34, .	4.0	6
8	Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Research, 2021, 14, 1465-1470.	10.4	32
9	Improving Dielectric Constant of Polymers through Liquid Electrolyte Inclusion. Advanced Functional Materials, 2021, 31, 2007863.	14.9	25
10	Flexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing. ACS Applied Polymer Materials, 2021, 3, 1880-1889.	4.4	4
11	Fabrication of Metal–Organic Framework/Polymer Composites via a One-Pot Solvent Crystal Template Strategy. ACS Applied Polymer Materials, 2021, 3, 2038-2044.	4.4	5
12	Colorimetric Ionic Organohydrogels Mimicking Human Skin for Mechanical Stimuli Sensing and Injury Visualization. ACS Applied Materials & Interfaces, 2021, 13, 26490-26497.	8.0	23
13	Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s. ACS Applied Materials & Interfaces, 2021, 13, 31102-31110.	8.0	39
14	Dynamics and stress relaxation of bidisperse polymer melts with unentangled and moderately entangled chains. Physics of Fluids, 2021, 33, 063105.	4.0	3
15	Metal Oxy-Hydroxides with a Hierarchical and Hollow Structure for Highly Efficient Solar-Thermal Water Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 27726-27733.	8.0	9
16	Hierarchically Porous Monolith with High MOF Accessibility and Strengthened Mechanical Properties using Waterâ€inâ€Oil High Internal Phase Emulsion Template. Advanced Materials Interfaces, 2021, 8, 2100620.	3.7	12
17	Adhering Low Surface Energy Materials without Surface Pretreatment via Ion–Dipole Interactions. ACS Applied Materials & Interfaces, 2021, 13, 41112-41119.	8.0	33
18	All-Solid-State Self-Healing Ionic Conductors Enabled by Ion–Dipole Interactions within Fluorinated Poly(Ionic Liquid) Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 41140-41148.	8.0	42

#	Article	IF	CITATIONS
19	Damage-resistant and healable polyacrylonitrile-derived stretchable materials with exceptional fracture toughness and fatigue threshold. Journal of Materials Chemistry A, 2021, 9, 23451-23458.	10.3	6
20	Structuring Metal–Organic Framework Materials into Hierarchically Porous Composites through Oneâ€Pot Fabrication Strategy. Chemistry - A European Journal, 2020, 26, 3358-3363.	3.3	5
21	Engineering bicontinuous polymeric monoliths through high internal phase emulsion templating. Materials Today Communications, 2020, 22, 100813.	1.9	1
22	Reversible Water Transportation Diode: Temperatureâ€Adaptive Smart Janus Textile for Moisture/Thermal Management. Advanced Functional Materials, 2020, 30, 1907851.	14.9	120
23	Developing Continuous Submicron-Scale Conductive Interpenetrating Hydrogel Network in Polyethylene Matrices through Controlled Crazing and Polymerization. Industrial & Engineering Chemistry Research, 2020, 59, 6609-6616.	3.7	2
24	Design and Synthesis of a Well-Controlled Mechanoluminescent Polymer System Based on Fluorescence Resonance Energy Transfer with Spiropyran as a Force-Activated Acceptor and Nitrobenzoxadiazole as a Fluorescent Donor. Macromolecules, 2019, 52, 7920-7928.	4.8	24
25	Thermoplastic Polyolefin Elastomer Blends for Multiple and Reversible Shape Memory Polymers. Industrial & Engineering Chemistry Research, 2019, 58, 19495-19502.	3.7	24
26	<i>110th Anniversary:</i> Model-Guided Preparation of Copolymer Sequence Distributions through Programmed Semibatch RAFT Mini-Emulsion Styrene/Butyl Acrylate Copolymerization. Industrial & Engineering Chemistry Research, 2019, 58, 18997-19008.	3.7	7
27	A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition. Polymer Chemistry, 2019, 10, 260-266.	3.9	7
28	Nature-Inspired Windmill for Water Collection in Complex Windy Environments. ACS Applied Materials & Interfaces, 2019, 11, 17952-17959.	8.0	17
29	Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PolyHIPE Foam for Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4318-4327.	8.0	83
30	Crystal Growth of Metal–Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega, 2019, 4, 169-175.	3.5	35
31	Tailoring Uniform Copolymer Composition Distribution via Policy II RAFT Solution Copolymerization of Styrene and Butyl Acrylate. Macromolecular Reaction Engineering, 2018, 12, 1800014.	1.5	3
32	Let spiropyran help polymers feel force!. Progress in Polymer Science, 2018, 79, 26-39.	24.7	119
33	Long-Acting and Safe Sunscreens with Ultrahigh Sun Protection Factor via Natural Lignin Encapsulation and Synergy. ACS Applied Bio Materials, 2018, 1, 1276-1285.	4.6	45
34	Solution Processed Coating of Polyolefin on Melamine Foams to Fabricate Tough Oil Superabsorbents. Macromolecular Materials and Engineering, 2018, 303, 1800436.	3.6	11
35	Preparation of Comb-Shaped Polyolefin Elastomers Having Ethylene/1-Octene Copolymer Backbone and Long Chain Polyethylene Branches via a Tandem Metallocene Catalyst System. Macromolecules, 2018, 51, 8790-8799.	4.8	32
36	Reversible Shape Memory Polymer from Semicrystalline Poly(ethylene- <i>co</i> -vinyl acetate) with Dynamic Covalent Polymer Networks. Macromolecules, 2018, 51, 8956-8963.	4.8	71

#	Article	IF	CITATIONS
37	Mechanically Mediated Atom Transfer Radical Polymerization: Exploring Its Potential at High Conversions. Macromolecules, 2018, 51, 6911-6921.	4.8	37
38	Benzothienobenzothiophene/polyimide blend-based organic phototransistors with double-layer gate dielectric. Organic Electronics, 2018, 59, 349-357.	2.6	7
39	Design and Synthesis of Mechanoâ€Responsive Colorâ€Changing Thermoplastic Elastomer Based on Poly(<i>nâ€</i> Butyl Acrylate)–Spiropyranâ€Polystyrene Combâ€Structured Graft Copolymers. Macromolecular Materials and Engineering, 2018, 303, 1800154.	3.6	20
40	Interconnected Porous Monolith Prepared via UiOâ€66 Stabilized Pickering High Internal Phase Emulsion Template. Chemistry - A European Journal, 2018, 24, 16426-16431.	3.3	28
41	Polyolefin Thermoplastics for Multiple Shape and Reversible Shape Memory. ACS Applied Materials & Interfaces, 2017, 9, 4882-4889.	8.0	86
42	Smart polyolefins feeling the force: Color changeable poly(ethylene-vinyl acetate) and poly(ethylene-octene) in response to mechanical force. Polymer, 2017, 112, 219-227.	3.8	23
43	Collectable and Recyclable Mussel-Inspired Poly(ionic liquid)-Based Sorbents for Ultrafast Water Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 2829-2835.	6.7	30
44	Mechanical Force Sensitive Acrylic Latex Coating. ACS Applied Materials & Interfaces, 2017, 9, 15156-15163.	8.0	35
45	Gas-Responsive Polymers. ACS Macro Letters, 2017, 6, 515-522.	4.8	81
46	Tailoring Polymer Molecular Weight Distribution and Multimodality in RAFT Polymerization Using Tube Reactor with Recycle. Macromolecular Reaction Engineering, 2017, 11, 1700023.	1.5	20
47	Effects of gate dielectric surface modification on phototransistors with polymer-blended benzothieno[2,3- b]benzothiophene semiconductor thin films. Organic Electronics, 2017, 44, 253-262.	2.6	6
48	Binary Blends of Polyimide and Benzothienobenzothiophene for Highâ€Performance Solutionâ€Processed Organic Phototransistors. Advanced Electronic Materials, 2017, 3, 1700284.	5.1	14
49	Highly Porous Poly(high internal phase emulsion) Membranes with "Open-Cell―Structure and CO ₂ -Switchable Wettability Used for Controlled Oil/Water Separation. Langmuir, 2017, 33, 11936-11944.	3.5	72
50	CO ₂ /N ₂ -Switchable Thermoresponsive Ionic Liquid Copolymer. Macromolecules, 2017, 50, 8378-8389.	4.8	11
51	Preparation of poly(ionic liquid) nanoparticles through RAFT/MADIX polymerization-induced self-assembly. Polymer Chemistry, 2017, 8, 5469-5473.	3.9	12
52	Pickering high internal phase emulsions stabilized by worm-like polymeric nanoaggregates. Polymer Chemistry, 2017, 8, 5474-5480.	3.9	43
53	Engineering Elastic ZIFâ€8â€5ponges for Oil–Water Separation. Advanced Materials Interfaces, 2017, 4, 1700560.	3.7	49
54	Synthesis and evaluation of Double-Decker Silsesquioxanes as modifying agent for epoxy resin. Polymer, 2017, 124, 157-167.	3.8	23

#	Article	IF	CITATIONS
55	Modeling and Experimentation of RAFT Solution Copolymerization of Styrene and Butyl Acrylate, Effect of Chain Transfer Reactions on Polymer Molecular Weight Distribution. Macromolecular Reaction Engineering, 2017, 11, 1700029.	1.5	6
56	Development of Novel Materials from Polymerization of Pickering Emulsion Templates. Advances in Polymer Science, 2017, , 101-119.	0.8	14
57	CO ₂ -Switchable Membranes Prepared by Immobilization of CO ₂ -Breathing Microgels. ACS Applied Materials & Interfaces, 2017, 9, 44146-44151.	8.0	28
58	A Straightforward Estimation of Activation and Deactivation Parameters for ATRP Systems from Actual Polymerization Rate and Molecular Weight Distribution Data. Macromolecular Theory and Simulations, 2017, 26, 1600045.	1.4	4
59	A Comprehensive Review on Controlled Synthesis of Longâ€Chain Branched Polyolefins: Part 3, Characterization of Longâ€Chain Branched Polymers. Macromolecular Reaction Engineering, 2017, 11, 1600012.	1.5	24
60	Breathable Microgel Colloidosome: Gas-Switchable Microcapsules with O ₂ and CO ₂ Tunable Shell Permeability for Hierarchical Size-Selective Control Release. Langmuir, 2017, 33, 6108-6115.	3.5	19
61	Factors Affecting Grafting Density in Surfaceâ€Initiated ATRP: A Simulation Study. Macromolecular Theory and Simulations, 2016, 25, 220-228.	1.4	24
62	A Comprehensive Review on Controlled Synthesis of Long-Chain-Branched Polyolefins: Part 2, Multiple Catalyst Systems and Prepolymer Modification. Macromolecular Reaction Engineering, 2016, 10, 180-200.	1.5	19
63	A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 1, Single Catalyst Systems. Macromolecular Reaction Engineering, 2016, 10, 156-179.	1.5	47
64	Rapid collection and re-dispersion of MOF particles by a simple and versatile method using a thermo-responsive polymer. RSC Advances, 2016, 6, 63398-63402.	3.6	3
65	Assembly of a Metal–Organic Framework into 3 D Hierarchical Porous Monoliths Using a Pickering High Internal Phase Emulsion Template. Chemistry - A European Journal, 2016, 22, 8751-8755.	3.3	80
66	Rapid UV-A photo detection using a BTBT organic thin-film transistor enhanced by a 1,5-dichloro-9,10-dintiro-anthracene acceptor. Organic Electronics, 2016, 37, 42-46.	2.6	11
67	Evaluation of Octyltetramethyldisiloxane-Containing Ethylene Copolymers as Composite Lubricant for High-Density Polyethylene. Macromolecular Materials and Engineering, 2016, 301, 1494-1502.	3.6	5
68	Oxygen-switchable thermo-responsive random copolymers. Polymer Chemistry, 2016, 7, 5456-5462.	3.9	16
69	Photo-inactive divinyl spiropyran mechanophore cross-linker for real-time stress sensing. Polymer, 2016, 99, 521-528.	3.8	40
70	High internal phase emulsion with double emulsion morphology and their templated porous polymer systems. Journal of Colloid and Interface Science, 2016, 483, 232-240.	9.4	56
71	Improvement on stability of polymeric latexes prepared by emulsion ATRP through copper removal using electrolysis. Polymer, 2016, 106, 261-266.	3.8	16
72	MOFsome via Transient Pickering Emulsion Template. Advanced Materials Interfaces, 2016, 3, 1600294.	3.7	7

#	Article	IF	CITATIONS
73	Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organicâ€Framework Particles for Separations Applications. Advanced Materials, 2016, 28, 7652-7657.	21.0	369
74	CO ₂ â€Breathing Induced Reversible Activation of Mechanophore within Microgels. Macromolecular Rapid Communications, 2016, 37, 957-962.	3.9	33
75	Alginate Hydrogel: A Shapeable and Versatile Platform for <i>in Situ</i> Preparation of Metal–Organic Framework–Polymer Composites. ACS Applied Materials & Interfaces, 2016, 8, 17395-17401.	8.0	127
76	Oxygen and Carbon Dioxide Dual Gas-Switchable Thermoresponsive Homopolymers. ACS Macro Letters, 2016, 5, 828-832.	4.8	34
77	Sunscreen Performance of Lignin from Different Technical Resources and Their General Synergistic Effect with Synthetic Sunscreens. ACS Sustainable Chemistry and Engineering, 2016, 4, 4029-4035.	6.7	155
78	Ultrasonically enhanced bulk ATRP of methyl methacrylate at high conversion with good livingness and control. AICHE Journal, 2016, 62, 1683-1687.	3.6	12
79	Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor. ACS Applied Materials & Interfaces, 2016, 8, 3744-3754.	8.0	18
80	Synthesis of a novel type of octyltetramethyldisiloxane-containing olefinic macromonomer and its copolymerization with ethylene. Polymer, 2016, 83, 20-26.	3.8	9
81	Toward Understanding of Branching in RAFT Copolymerization of Methyl Methacrylate through a Cleavable Dimethacrylate. Macromolecules, 2016, 49, 752-759.	4.8	21
82	Employing Gradient Copolymer To Achieve Gel Polymer Electrolytes with High Ionic Conductivity. Macromolecules, 2016, 49, 2179-2188.	4.8	26
83	Progress in reactor engineering of controlled radical polymerization: a comprehensive review. Reaction Chemistry and Engineering, 2016, 1, 23-59.	3.7	53
84	What Limits the Chain Growth from Flat Surfaces in Surfaceâ€Initiated ATRP: Propagation, Termination or Both?. Macromolecular Theory and Simulations, 2015, 24, 89-99.	1.4	19
85	Polymer Reaction Engineering in China. Macromolecular Reaction Engineering, 2015, 9, 382-384.	1.5	0
86	CO ₂ â€Redispersible Polymer Latexes with Low Glass Transition Temperatures. Macromolecular Chemistry and Physics, 2015, 216, 561-568.	2.2	12
87	Highly UV‣ensitive and Responsive Benzothiophene/Dielectric Polymer Blendâ€Based Organic Thinâ€Film Phototransistor. Advanced Electronic Materials, 2015, 1, 1500119.	5.1	36
88	Modelâ€Based Production of Polymer Chains Having Precisely Designed Endâ€ŧoâ€End Gradient Copolymer Composition and Chain Topology Distributions in Controlled Radical Polymerization, A Review. Macromolecular Reaction Engineering, 2015, 9, 409-417.	1.5	27
89	Surface-Initiated Atom Transfer Radical Polymerization. Advances in Polymer Science, 2015, , 29-76.	0.8	51
90	Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions. Polymers, 2015, 7, 819-835.	4.5	35

#	Article	IF	CITATIONS
91	A versatile and facile surface modification route based on polydopamine for the growth of MOF films on different substrates. Canadian Journal of Chemical Engineering, 2015, 93, 63-67.	1.7	18
92	Synthesis of Ultrahigh-Molecular-Weight Ethylene-1-Hexene Copolymers with High Hexene Content via Living Polymerization with Fluorinated Bis(phenoxy-imine) Titanium(IV). Macromolecular Rapid Communications, 2015, 36, 286-291.	3.9	6
93	Oxygen and Carbon Dioxide Dual Gas-Responsive and Switchable Microgels Prepared from Emulsion Copolymerization of Fluoro- and Amino-Containing Monomers. Langmuir, 2015, 31, 2196-2201.	3.5	47
94	Modeling and theoretical development in controlled radical polymerization. Progress in Polymer Science, 2015, 45, 71-101.	24.7	112
95	Design and Synthesis of Thermoresponsive Ionic Liquid Polymer in Acetonitrile as a Reusable Extractant for Separation of Tocopherol Homologues. Macromolecules, 2015, 48, 915-924.	4.8	40
96	Well-controlled and stable emulsion ATRP of MMA with low surfactant concentration using surfactant–ligand design as the copper capture agent. Polymer Chemistry, 2015, 6, 2837-2843.	3.9	22
97	Macromol. Rapid Commun. 3/2015. Macromolecular Rapid Communications, 2015, 36, 340-340.	3.9	0
98	Synthesis and Redispersibility of Poly(styrene- <i>block</i> - <i>n</i> -butyl acrylate) Core–Shell Latexes by Emulsion Polymerization with RAFT Agent–Surfactant Design. Macromolecules, 2015, 48, 1313-1319.	4.8	29
99	Pushing Monomer Conversions High in Bulk ATRP: The Effects of ICAR Agent Concentrations on the System Livingness and Polymer Molecular Weight Control. ACS Symposium Series, 2015, , 159-169.	0.5	2
100	One-Pack Epoxy Foaming with CO ₂ as Latent Blowing Agent. ACS Macro Letters, 2015, 4, 693-697.	4.8	26
101	Elastomeric properties of ethylene/1-octene random and block copolymers synthesized from living coordination polymerization. Polymer, 2015, 72, 118-124.	3.8	18
102	The effect of azobenzene derivatives on UV-responsive organic thin-film transistors with a 2,7-dipentylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene semiconductor. Journal of Materials Chemistry C, 2015, 3, 8090-8096.	5.5	25
103	Ionic Liquids: Versatile Media for Preparation of Vesicles from Polymerization-Induced Self-Assembly. ACS Macro Letters, 2015, 4, 755-758.	4.8	96
104	Preparation of ultrahigh molecular weight ethylene/1-octene block copolymers using ethylene pressure pulse feeding policies. Polymer Chemistry, 2015, 6, 3800-3806.	3.9	15
105	Method of moments: A versatile tool for deterministic modeling of polymerization kinetics. European Polymer Journal, 2015, 68, 139-160.	5.4	136
106	Branching in RAFT Miniemulsion Copolymerization of Styrene/Triethylene Glycol Dimethacrylate and Control of Branching Density Distribution. Macromolecular Reaction Engineering, 2015, 9, 90-99.	1.5	20
107	A Molecular Weight Distribution Polydispersity Equation for the ATRP System: Quantifying the Effect of Radical Termination. Macromolecules, 2015, 48, 6440-6449.	4.8	51
108	Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization. Dalton Transactions, 2015, 44, 16752-16757.	3.3	24

#	Article	IF	CITATIONS
109	Thermal and mechanical properties of ultrahigh-molecular-weight ethylene/1-hexene copolymers prepared by living polymerization with fluorinated bis(phenoxy-imine) titanium(IV) catalyst. Polymer, 2015, 80, 109-114.	3.8	14
110	Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Industrial & Engineering Chemistry Research, 2015, 54, 12025-12030.	3.7	73
111	Development of Epoxy Foaming with CO ₂ as Latent Blowing Agent and Principle in Selection of Amine Curing Agent. Industrial & Engineering Chemistry Research, 2015, 54, 11056-11064.	3.7	20
112	High Temperature High Pressure Tandem Polymerization of Ethylene for Synthesis of Ethyleneâ€1â€Hexene Copolymers from Single Reactor with SNS r and CGCâ€Ti Catalysts. Macromolecular Reaction Engineering, 2015, 9, 32-39.	1.5	10
113	Preparation of metal–organic framework films by electrophoretic deposition method. Materials Letters, 2015, 142, 19-22.	2.6	56
114	Reversibly Dispersible/Collectable Metalâ€Organic Frameworks Prepared by Grafting Thermally Responsive and Switchable Polymers. Macromolecular Materials and Engineering, 2015, 300, 191-197.	3.6	27
115	A More Than Six Orders of Magnitude UVâ€Responsive Organic Fieldâ€Effect Transistor Utilizing a Benzothiophene Semiconductor and Disperse Red 1 for Enhanced Charge Separation. Advanced Materials, 2015, 27, 228-233.	21.0	54
116	Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 2015, 17, 320-324.	9.0	352
117	Oxygen–Nitrogen Switchable Copolymers of 2,2,2â€Trifluoroethyl Methacrylate and <i>N,N</i> â€Dimethylaminoethyl Methacrylate. Macromolecular Rapid Communications, 2014, 35, 1692-1696.	3.9	26
118	Development of Molecular Weight Distribution in ATRP with Radical Termination. Macromolecular Theory and Simulations, 2014, 23, 227-240.	1.4	13
119	Surfactant–Ligand Design for <i>ab Initio</i> Emulsion Atom Transfer Radical Polymerization. Macromolecules, 2014, 47, 7701-7706.	4.8	19
120	Structure analysis of ethylene/1-octene copolymers synthesized from living coordination polymerization. European Polymer Journal, 2014, 54, 160-171.	5.4	33
121	Graphene Nanoplatelets Prepared by Electric Heating Acid-Treated Graphite in a Vacuum Chamber and Their Use as Additives in Organic Semiconductors. ACS Applied Materials & Interfaces, 2014, 6, 20269-20275.	8.0	12
122	CO ₂ -responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO ₂ /N ₂ -switchable Pickering emulsions. Green Chemistry, 2014, 16, 4963-4968.	9.0	173
123	Controlled Radical Polymerization at High Conversion: Bulk ICAR ATRP of Methyl Methacrylate. Industrial & Engineering Chemistry Research, 2014, 53, 3472-3477.	3.7	36
124	Highly CO ₂ /N ₂ -Switchable Zwitterionic Surfactant for Pickering Emulsions at Ambient Temperature. Langmuir, 2014, 30, 10248-10255.	3.5	87
125	Oxygen and Carbon Dioxide Dual Responsive Nanoaggregates of Fluoro- and Amino-Containing Copolymer. ACS Macro Letters, 2014, 3, 743-746.	4.8	66
126	Achieving High onversion Bulk ATRP with Good Livingness and Well Controlled by Design and Optimization of Polymerization Temperature Profile. Macromolecular Reaction Engineering, 2014, 8, 771-776.	1.5	15

#	Article	IF	CITATIONS
127	Modeling and Simulation of Complex Polymerization Reactions. Macromolecular Theory and Simulations, 2014, 23, 107-109.	1.4	2
128	Targeting Copolymer Composition Distribution via Model-Based Monomer Feeding Policy in Semibatch RAFT Mini-Emulsion Copolymerization of Styrene and Butyl Acrylate. Industrial & Engineering Chemistry Research, 2014, 53, 7321-7332.	3.7	26
129	Polyethylenimine-Assisted Extraction of α-Tocopherol from Tocopherol Homologues and CO ₂ -Triggered Fast Recovery of the Extractant. Industrial & Engineering Chemistry Research, 2014, 53, 16025-16032.	3.7	23
130	Using unsorted single-wall carbon nanotubes to enhance mobility of diketopyrrolopyrrole-quarterthiophene copolymer in thin-film transistors. Organic Electronics, 2014, 15, 2639-2646.	2.6	5
131	Modeling molecular weight distribution and effect of termination in controlled radical polymerization: A novel and transformative approach. Journal of Polymer Science Part A, 2014, 52, 639-651.	2.3	21
132	Tandem Action of SNS–Cr and CGC–Ti in Preparation of Ethylene–1â€Hexene Copolymers from Ethylene Feedstock. Macromolecular Chemistry and Physics, 2014, 215, 1661-1667.	2.2	9
133	Synthesis of low molecular weight polyethylenes and polyethylene mimics with controlled chain structures. Progress in Polymer Science, 2014, 39, 1196-1234.	24.7	14
134	CO2-triggered fast micellization of a liposoluble star copolymer in water. Green Materials, 2014, 2, 82-94.	2.1	14
135	Unsorted single walled carbon nanotubes enabled the fabrication of high performance organic thin film transistors with low cost metal electrodes. Chemical Communications, 2013, 49, 8791.	4.1	5
136	Synthesis of ethylene/1â€octene copolymers with controlled block structures by semibatch living copolymerization. AICHE Journal, 2013, 59, 4686-4695.	3.6	23
137	Living copolymerization of ethylene/1â€octene with fluorinated Flâ€Ti catalyst. Journal of Polymer Science Part A, 2013, 51, 405-414.	2.3	26
138	Interfacial Synthesis of Free‣tanding Metal–Organic Framework Membranes. European Journal of Inorganic Chemistry, 2013, 2013, 1294-1300.	2.0	61
139	Composite Semiconductor Material of Carbon Nanotubes and Poly[5,5′-bis(3-dodecyl-2-thienyl)-2,2′-bithiophene] for High-Performance Organic Thin-Film Transistors. Journal of Electronic Materials, 2013, 42, 3481-3488.	2.2	8
140	Switchable Block Copolymer Surfactants for Preparation of Reversibly Coagulatable and Redispersible Poly(methyl methacrylate) Latexes. Macromolecules, 2013, 46, 1261-1267.	4.8	73
141	Design and Synthesis of Poly(butyl acrylate) Networks through RAFT Polymerization with Crosslinking for Controlledâ€Release Applications. Macromolecular Materials and Engineering, 2013, 298, 391-399.	3.6	18
142	Bulk Synthesis and Modeling of Living <scp>ROMP</scp> of 1,5â€ <scp>C</scp> yclooctadiene for Narrowly Distributed Low Molecular Weight Linear Polyethylenes. Macromolecular Reaction Engineering, 2013, 7, 684-698.	1.5	9
143	Fabrication of Polyelectrolyte/TiO ₂ Hybrid Membrane via a Simple Method and Characterization of its Thermal Behavior. Advanced Materials Research, 2012, 602-604, 1484-1487.	0.3	1
144	Kinetics and Modeling of Semi-Batch RAFT Copolymerization with Hyperbranching. Macromolecules, 2012, 45, 28-38.	4.8	59

#	Article	IF	CITATIONS
145	Termination of Surface Radicals and Kinetic Analysis of Surfaceâ€Initiated RAFT Polymerization on Flat Surfaces. Macromolecular Theory and Simulations, 2012, 21, 602-614.	1.4	29
146	Termination of Surface Radicals and Kinetic Modeling of ATRP Grafting from Flat Surfaces by Addition of Deactivator. Macromolecules, 2012, 45, 1198-1207.	4.8	56
147	Preparation of N ₂ /CO ₂ Triggered Reversibly Coagulatable and Redispersible Latexes by Emulsion Polymerization of Styrene with a Reactive Switchable Surfactant. Langmuir, 2012, 28, 5940-5946.	3.5	95
148	Modification of Polyurethane with Polyethylene Glycol–Corn Trypsin Inhibitor for Inhibition of Factor Xlla in Blood Contact. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1981-1993.	3.5	12
149	Fabrication and Performance of a Photonic-Microfluidic Integrated Device. Micromachines, 2012, 3, 62-77.	2.9	15
150	Effect of long chain branching on nonisothermal crystallization behavior of polyethylenes synthesized with constrained geometry catalyst. Polymer Engineering and Science, 2012, 52, 21-34.	3.1	35
151	Magnetic Organosilica Nanoparticles for Localized Polymer Surface Modification. Macromolecular Materials and Engineering, 2012, 297, 263-271.	3.6	12
152	Preparation of CO ₂ /N ₂ â€Triggered Reversibly Coagulatable and Redispersible Polyacrylate Latexes by Emulsion Polymerization Using a Polymeric Surfactant. Macromolecular Rapid Communications, 2012, 33, 916-921.	3.9	92
153	Synthesis and Characterization of PE-b-POEGMA Copolymers Prepared by Linear/Hyperbranched Telechelic Polyethylene-Initiated ATRP of Oligo(ethylene glycol) Methacrylates. ACS Symposium Series, 2012, , 39-64.	0.5	5
154	Design and evaluation of a thermochromic roof system for energy saving based on poly(N-isopropylacrylamide) aqueous solution. Energy and Buildings, 2012, 48, 175-179.	6.7	22
155	Dual surface modification with PEG and corn trypsin inhibitor: Effect of PEG:CTI ratio on protein resistance and anticoagulant properties. Journal of Biomedical Materials Research - Part A, 2012, 100A, 856-862.	4.0	11
156	Toward Well-Controlled ab Initio RAFT Emulsion Polymerization of Styrene Mediated by 2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic Acid. Macromolecules, 2011, 44, 221-229.	4.8	62
157	Reversibly Coagulatable and Redispersible Polystyrene Latex Prepared by Emulsion Polymerization of Styrene Containing Switchable Amidine. Macromolecules, 2011, 44, 6539-6545.	4.8	94
158	pH Responsivity and Micelle Formation of Gradient Copolymers of Methacrylic Acid and Methyl Methacrylate in Aqueous Solution. Langmuir, 2011, 27, 11306-11315.	3.5	56
159	Kinetics and Modeling of Solution ARGET ATRP of Styrene, Butyl Acrylate, and Methyl Methacrylate. Macromolecular Reaction Engineering, 2011, 5, 467-478.	1.5	52
160	Novel Polymeric Surfadditives Synthesized via Atom Transfer Radical Polymerization and Their Surface Migration Properties. Macromolecular Reaction Engineering, 2011, 5, 443-452.	1.5	2
161	Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: In vitro interactions with plasma proteins and platelets. Acta Biomaterialia, 2011, 7, 3692-3699.	8.3	73
162	Surface modification with polyethylene glycol–corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces. Acta Biomaterialia, 2011, 7, 4177-4186.	8.3	21

#	Article	IF	CITATIONS
163	Formation of bowtieâ€shaped excitation in a photonic–microfluidic integrated devices. Microwave and Optical Technology Letters, 2011, 53, 2583-2586.	1.4	2
164	Modeling the Effects of Reactor Backmixing on RAFT Polymerization. Macromolecular Reaction Engineering, 2011, 5, 55-68.	1.5	18
165	Modeling analysis of chain transfer in reversible additionâ€fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2011, 122, 497-508.	2.6	15
166	Influence of chain microstructure on ethylene–norbornene copolymer film properties. Journal of Applied Polymer Science, 2011, 121, 707-710.	2.6	5
167	Controlled chattering on PMMA and epoxy: Effect of crosslinking and cutting speed on pattern formation. Polymer, 2011, 52, 2025-2031.	3.8	4
168	A one-step approach for the fabrication of polymer and metal nanowires. Nanotechnology, 2011, 22, 265305.	2.6	0
169	Diffusion of semiâ€flexible polyelectrolyte through nanochannels. AICHE Journal, 2010, 56, 1684-1692.	3.6	4
170	A microfluidic-photonic-integrated device with enhanced excitation power density. Proceedings of SPIE, 2010, , .	0.8	4
171	Kinetic Modeling of Surfaceâ€Initiated Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering, 2010, 4, 235-250.	1.5	41
172	Reaction Engineering and Industrial Aspects of Controlled/Living Radical Polymerization. Macromolecular Reaction Engineering, 2010, 4, 163-164.	1.5	4
173	ATRP grafting of oligo(ethylene glycol) methacrylates from gold surface — Effect of monomer size on grafted chain and EO unit densities. Canadian Journal of Chemistry, 2010, 88, 411-417.	1.1	9
174	Proteinâ€resistant polyurethane by sequential grafting of poly(2â€hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surfaceâ€initiated ATRP. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1223-1232.	4.0	31
175	The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6â€dimethylphenol. Journal of Applied Polymer Science, 2010, 117, 3473-3481.	2.6	2
176	Stability study of inverse suspension copolymerization of 1,1,3,3â€ŧetramethylguandium acrylate and <i>N,N′</i> â€methylenebisacrylamide. Journal of Applied Polymer Science, 2010, 118, 1450-1454.	2.6	0
177	Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist. Macromolecular Materials and Engineering, 2010, 295, 559-565.	3.6	14
178	Nanoscale patterning through self-assembly of hydrophilic block copolymers withÂone chain end constrained to surface. Polymer, 2010, 51, 1771-1778.	3.8	20
179	Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact. Colloids and Surfaces B: Biointerfaces, 2010, 81, 389-396.	5.0	79
180	Hybrid atom transfer radical polymerization system for balanced polymerization rate and polymer molecular weight control. Journal of Polymer Science Part A, 2010, 48, 2294-2301.	2.3	14

#	Article	IF	CITATIONS
181	Oneâ€step synthesis of hyperbranched polyethylene macroinitiator and its block copolymers with methyl methacrylate or styrene via ATRP. Journal of Polymer Science Part A, 2010, 48, 3024-3032.	2.3	41
182	Higherâ€molecularâ€weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosityâ€index improvers. Polymer Engineering and Science, 2010, 50, 911-918.	3.1	37
183	Protein-Resistant Materials via Surface-Initiated Atom Transfer Radical Polymerization of 2-Methacryloyloxyethyl Phosphorylcholine. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1331-1344.	3.5	21
184	Controlled chattering—a new †cutting-edge' technology for nanofabrication. Nanotechnology, 2010, 21, 355302.	2.6	5
185	Polystyrene- <i>block</i> -poly(<i>n</i> -butyl acrylate)- <i>block</i> -polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Polymerization. Macromolecules, 2010, 43, 7472-7481.	4.8	119
186	Facile Inkjet-Printing Self-Aligned Electrodes for Organic Thin-Film Transistor Arrays with Small and Uniform Channel Length. ACS Applied Materials & Interfaces, 2010, 2, 2189-2192.	8.0	35
187	Synthesis and Characterization of Hyperbranched Polyacrylamide Using Semibatch Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2010, 43, 4062-4069.	4.8	56
188	Formation and characterization of an ideal excitation beam geometry in an optofluidic device. Biomedical Optics Express, 2010, 1, 848.	2.9	23
189	High-Performance Polythiophene Thin-Film Transistors Processed with Environmentally Benign Solvent. Macromolecules, 2010, 43, 6368-6373.	4.8	29
190	Gelation Kinetics of RAFT Radical Copolymerization of Methacrylate and Dimethacrylate. ACS Symposium Series, 2009, , 181-193.	0.5	6
191	Inkjet printing narrow electrodes with <50â€,μm line width and channel length for organic thin-film transistors. Applied Physics Letters, 2009, 94, .	3.3	58
192	Model development for semicontinuous production of ethylene and norbornene copolymers having uniform composition. AICHE Journal, 2009, 55, 663-674.	3.6	6
193	Proteinâ€resistant polyurethane via surfaceâ€initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1189-1201.	4.0	30
194	Preparation of Polar Ethylene–Norbornene Copolymers by Metallocene Terpolymerization with Triisobutylaluminiumâ€Protected Butâ€3â€enâ€1â€ol. Macromolecular Rapid Communications, 2009, 30, 548-55	53.9	28
195	Modelâ€based design and synthesis of gradient MMA/ <i>t</i> BMA copolymers by computerâ€programmed semibatch atom transfer radical copolymerization. Journal of Polymer Science Part A, 2009, 47, 69-79.	2.3	42
196	Effect of monomer composition on apparent chain transfer coefficient in reversible addition fragmentation transfer (RAFT) copolymerization. Polymer, 2009, 50, 802-809.	3.8	13
197	Comparison of reaction kinetics and gelation behaviors in atom transfer, reversible addition–fragmentation chain transfer and conventional free radical copolymerization of oligo(ethylene glycol) methyl ether methacrylate and oligo(ethylene glycol) dimethacrylate. Polymer, 2009 50, 3488-3494	3.8	54
198	Preparation of Ni-g-polymer core–shell nanoparticles by surface-initiated atom transfer radical polymerization. Polymer, 2009, 50, 4293-4298.	3.8	23

#	Article	IF	CITATIONS
199	Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: Effects of main chain and side chain lengths of grafts. Colloids and Surfaces B: Biointerfaces, 2009, 70, 53-59.	5.0	42
200	Preparation and SO ₂ Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles. Industrial & amp; Engineering Chemistry Research, 2009, 48, 2142-2148.	3.7	93
201	Novel High-Performance Liquid-Crystalline Organic Semiconductors for Thin-Film Transistors. Chemistry of Materials, 2009, 21, 2727-2732.	6.7	46
202	Chain Conformation of a New Class of PEG-Based Thermoresponsive Polymer Brushes Grafted on Silicon as Determined by Neutron Reflectometry. Langmuir, 2009, 25, 10271-10278.	3.5	79
203	Polypropylene and Ethyleneâ^'Propylene Copolymer Reactor Alloys Prepared by Metallocene/Zieglerâ^'Natta Hybrid Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 8349-8355.	3.7	20
204	Phase Behavior of Ternary Homopolymer/Gradient Copolymer Blends. Macromolecules, 2009, 42, 2275-2285.	4.8	41
205	Ab Initio Batch Emulsion RAFT Polymerization of Styrene Mediated by Poly(acrylic acid- <i>b</i> -styrene) Trithiocarbonate. Macromolecules, 2009, 42, 6414-6421.	4.8	115
206	Modeling of Branching and Gelation in RAFT Copolymerization of Vinyl/Divinyl Systems. Macromolecules, 2009, 42, 85-94.	4.8	81
207	RAFT GRAFTING POLYMERIZATION OF MMA/St FROM SURFACE OF SILICON WAFER. Acta Polymerica Sinica, 2009, 007, 699-704.	0.0	Ο
208	Surface modification of active metals through atom transfer radical polymerization grafting of acrylics. Applied Surface Science, 2008, 254, 6802-6809.	6.1	39
209	Interactions of poly(2-methacryloyloxyethyl phosphorylcholine) with various salts studied by size exclusion chromatography. Colloid and Polymer Science, 2008, 286, 1443-1454.	2.1	30
210	Effect of rate retardation in RAFT grafting polymerization from silicon wafer surface. Journal of Polymer Science Part A, 2008, 46, 970-978.	2.3	30
211	Diffusionâ€controlled atom transfer radical polymerization with crosslinking. Polymer Engineering and Science, 2008, 48, 1254-1260.	3.1	15
212	Reaction Behavior and Network Development in RAFT Radical Polymerization of Dimethacrylates. Macromolecular Chemistry and Physics, 2008, 209, 551-556.	2.2	75
213	Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles. AICHE Journal, 2008, 54, 1073-1087.	3.6	67
214	Synthesis and characterization of hyperbranched polyethylenes containing cross-linking structures by chain walking copolymerization of ethylene with diacrylate comonomer. Polymer, 2008, 49, 3382-3392.	3.8	35
215	Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. Journal of Membrane Science, 2008, 319, 271-278.	8.2	159
216	Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. Journal of Membrane Science, 2008, 322, 171-177.	8.2	114

#	ARTICLE g and kinetics of tandem polymerization of ethylene catalyzed by	IF	CITATIONS
217	bis(2-dodecyisuiranyi-ethyi)amine- <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math<br">altimg="si67.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>CrCl</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mmi:math>	<	/mml:mrow>
	and <mml:math <="" altimg="si68.gif" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

#	ARTICLE	IF	CITATIONS
235	A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. Journal of Membrane Science, 2007, 303, 204-212.	8.2	155
236	Development of networks in atom transfer radical polymerization of dimethacrylates. Polymer, 2007, 48, 7058-7064.	3.8	62
237	Fundamentals and development of high-efficiency supported catalyst systems for atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 553-565.	2.3	54
238	Kinetics of methyl methacrylate andn-butyl acrylate copolymerization mediated by 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. Journal of Polymer Science Part A, 2007, 45, 3098-3111.	2.3	14
239	Synthesis of ethylene-1-hexene copolymers from ethylene stock by tandem action of bis(2-dodecylsulfanyl-ethyl) amine-CrCl3 and Et(Ind)2ZrCl2. Journal of Polymer Science Part A, 2007, 45, 3562-3569.	2.3	26
240	Effect of Reversible Additionâ^'Fragmentation Transfer (RAFT) Reactions on (Mini)emulsion Polymerization Kinetics and Estimate of RAFT Equilibrium Constant. Macromolecules, 2006, 39, 1328-1337.	4.8	115
241	Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 2006, 1, 50-60.	1.6	141
242	Feasibility Analysis of Surface Mediation in Supported Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 4690-4695.	4.8	22
243	Synthesis and Thin-Film Transistor Performance of Poly(4,8-didodecylbenzo[1,2-b:4,5-bâ€~]dithiophene). Chemistry of Materials, 2006, 18, 3237-3241.	6.7	130
244	Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 4554-4555.	13.7	117
245	Thermal-initiated reversible addition–fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen. Journal of Polymer Science Part A, 2006, 44, 3343-3354.	2.3	60
246	Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.3	Tf 50 302 Tc
247	Emulsion atom transfer radical block copolymerization of 2-ethylhexyl methacrylate and methyl methacrylate. Journal of Polymer Science Part A, 2006, 44, 1914-1925.	2.3	34
248	Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion. Biomaterials, 2006, 27, 847-855.	11.4	320
249	Loss in Activity and Catalyst Recyclability in Batch and Continuous Supported Atom Transfer Radical Polymerization. ACS Symposium Series, 2006, , 85-97.	0.5	4
250	Surface-initiated atom transfer radical polymerization of polyhedral oligomeric silsesquioxane (POSS) methacrylate from flat silicon wafer. Polymer, 2006, 47, 1119-1123.	3.8	51
251	Counter diffusion self-assembly synthesis of nanostructured silica membranes. Journal of Membrane Science, 2006, 282, 266-275.	8.2	25
252	Differential scanning calorimetry of copolymer of isotactic polypropylene backbone with grafted poly(ethylene-co-propylene) branches. Journal of Applied Polymer Science, 2006, 99, 3380-3388.	2.6	2

#	Article	IF	CITATIONS
253	Kinetic Behavior of Atom Transfer Radical Polymerization of Dimethacrylates. Macromolecular Chemistry and Physics, 2006, 207, 287-294.	2.2	44
254	Morphological and Physical Properties of Triblock Copolymers of Methyl Methacrylate and 2-Ethylhexyl Methacrylate. Macromolecular Materials and Engineering, 2006, 291, 1104-1118.	3.6	4
255	Effect of Chain Straightening on Plateau Modulus and Entanglement Molecular Weight of Ni-diimine Poly(1-hexene)s. Macromolecular Rapid Communications, 2006, 27, 871-876.	3.9	20
256	Chain Orientation in Polyethylene Fibers Prepared by Ethylene Nanoextrusion Polymerization. Macromolecular Rapid Communications, 2006, 27, 1217-1222.	3.9	10
257	Preparation and SO2 Absorption/Desorption Properties of Crosslinked Poly(1,1,3,3-Tetramethylguanidine Acrylate) Porous Particles. Macromolecular Rapid Communications, 2006, 27, 1949-1954.	3.9	41
258	Design and Control of Copolymer Composition Distribution in Living Radical Polymerization Using Semi-Batch Feeding Policies: A Model Simulation. Macromolecular Theory and Simulations, 2006, 15, 356-368.	1.4	77
259	Facile and Effective Purification of Polymers Produced by Atom Transfer Radical Polymerization via Simple Catalyst Precipitation and Microfiltration. Macromolecules, 2006, 39, 3-5.	4.8	44
260	Kinetics of Propylene Bulk Polymerization with a Spherical Ziegler-Natta Catalyst. Studies in Surface Science and Catalysis, 2006, 161, 253-270.	1.5	0
261	Branched-PE/i-PP Reactor Blends Prepared through Ethylene Gas-Phase Polymerization Catalyzed by α-Diimine Nickel Supported on iPP Particles. Studies in Surface Science and Catalysis, 2006, , 245-252.	1.5	3
262	Synthesis of reactor blend of linear and branched polyethylene using metallocene/Ni-diimine binary catalyst system in a single reactor. Journal of Applied Polymer Science, 2005, 96, 2212-2217.	2.6	8
263	Long-Chain Branching and Rheological Properties of Ethylene-1-Hexene Copolymers Synthesized from Ethylene Stock by Concurrent Tandem Catalysis. Macromolecular Chemistry and Physics, 2005, 206, 2096-2105.	2.2	30
264	Surface-Initiated Atom Transfer Radical Polymerization of Oligo(ethylene glycol) Methacrylate: Effect of Solvent on Graft Density. Macromolecular Rapid Communications, 2005, 26, 1383-1388.	3.9	71
265	Emulsion atom transfer radical polymerization of 2-ethylhexyl methacrylate. Polymer, 2005, 46, 5484-5493.	3.8	52
266	Complexation of well-controlled low-molecular weight polyelectrolytes with antisense oligonucleotides. Colloid and Polymer Science, 2005, 283, 1197-1205.	2.1	8
267	Branching and gelation in atom transfer radical polymerization of methyl methacrylate and ethylene glycol dimethacrylate. Polymer Engineering and Science, 2005, 45, 720-727.	3.1	98
268	Control of the polymer molecular weight in atom transfer radical polymerization with branching/crosslinking. Journal of Polymer Science Part A, 2005, 43, 5710-5714.	2.3	58
269	Heterogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate at Low Metal Salt Concentrations. Industrial & Engineering Chemistry Research, 2005, 44, 677-685.	3.7	20
270	Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl) Tj ETQq0 0 0 rgBT	Overlock 3.5	10 Tf 50 67 T 342

5980-5987.

16

#	Article	IF	CITATIONS
271	Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors. Applied Physics Letters, 2005, 86, 142102.	3.3	130
272	Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. Journal of Polymer Science Part A, 2004, 42, 2931-2942.	2.3	151
273	Direct synthesis of linear low-density polyethylene of ethylene/1-hexene from ethylene with a tandem catalytic system in a single reactor. Journal of Polymer Science Part A, 2004, 42, 4327-4336.	2.3	36
274	Rheological and thermomechanical properties of long-chain-branched polyethylene prepared by slurry polymerization with metallocene catalysts. Journal of Applied Polymer Science, 2004, 92, 307-316.	2.6	29
275	Syndiospecific styrene polymerization with CpTiCl3/MAO: Effects of the order of reactant addition on polymerization and polymer properties. Journal of Applied Polymer Science, 2004, 94, 1449-1455.	2.6	6
276	Melt Rheological Properties of Branched Polyethylenes Produced with Pd- and Ni–Diimine Catalysts. Macromolecular Chemistry and Physics, 2004, 205, 897-906.	2.2	54
277	A Tandem Catalytic System for the Synthesis of Ethylene-Hex-1-ene Copolymers from Ethylene Stock. Macromolecular Rapid Communications, 2004, 25, 647-652.	3.9	40
278	Heterogeneity Features of Bulk Atom Transfer Radical Polymerization of Methyl Methacrylate in an Ampoule Reactor. Macromolecular Rapid Communications, 2004, 25, 925-929.	3.9	5
279	Location of the Catalytic Site in Supported Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2004, 25, 991-994.	3.9	29
280	Dynamic mechanical and rheological properties of metallocene-catalyzed long-chain-branched ethylene/propylene copolymers. Polymer, 2004, 45, 5497-5504.	3.8	41
281	Triple-detector GPC characterization and processing behavior of long-chain-branched polyethylene prepared by solution polymerization with constrained geometry catalyst. Polymer, 2004, 45, 6495-6505.	3.8	110
282	Ethylene polymerization with homogeneous nickel–diimine catalysts: effects of catalyst structure and polymerization conditions on catalyst activity and polymer properties. Polymer, 2004, 45, 6823-6829.	3.8	49
283	Synthesis and Rheological Properties of Long-Chain-Branched Isotactic Polypropylenes Prepared by Copolymerization of Propylene and Nonconjugated Dienes. Industrial & Engineering Chemistry Research, 2004, 43, 2860-2870.	3.7	88
284	Microscopic Studies on Liquid Crystal Poly(3,3â€~Ââ€~â€~-dialkylquaterthiophene) Semiconductor. Macromolecules, 2004, 37, 8307-8312.	4.8	86
285	ESR Study and Radical Observation in Transition Metal-Mediated Polymerization: Unified View of Atom Transfer Radical Polymerization Mechanism. ACS Symposium Series, 2003, , 161-179.	0.5	0
286	Ethylene Polymerization with Silica-Supported Nickel-Diimine Catalyst: Effect of Support and Polymerization Conditions on Catalyst Activity and Polymer Properties. Macromolecular Chemistry and Physics, 2003, 204, 1653-1659.	2.2	69
287	Atom Transfer Radical Block Copolymerization of 2-(N,N-Dimethylamino)ethyl Methacrylate and 2-Hydroxyethyl Methacrylate. Macromolecular Materials and Engineering, 2003, 288, 925-935.	3.6	38
288	Synthesis and Characterization of Long-Chain-Branched Polyolefins with Metallocene Catalysts: Copolymerization of Ethylene with Poly(ethylene-co-propylene) Macromonomer. Macromolecular Rapid Communications, 2003, 24, 311-315.	3.9	23

#	Article	IF	CITATIONS
289	Calculations of Monomer Conversion and Radical Concentration in Reversible Addition-Fragmentation Chain Transfer Radical Polymerization. Macromolecular Theory and Simulations, 2003, 12, 663-668.	1.4	16
290	Effects of Diffusion-Controlled Radical Reactions on RAFT Polymerization. Macromolecular Theory and Simulations, 2003, 12, 196-208.	1.4	72
291	Electron spin resonance spectroscopy study on reduction of constrained-geometry catalyst systems. Journal of Applied Polymer Science, 2003, 89, 2474-2482.	2.6	4
292	Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diimine catalyst. Polymer, 2003, 44, 969-980.	3.8	73
293	Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2433-2443.	2.1	56
294	Synthesis of branched polypropylene with isotactic backbone and atactic side chains by binary iron and zirconium single-site catalysts. Journal of Polymer Science Part A, 2003, 41, 1152-1159.	2.3	45
295	Modeling the reversible addition-fragmentation transfer polymerization process. Journal of Polymer Science Part A, 2003, 41, 1553-1566.	2.3	123
296	A difference of six orders of magnitude: A reply to ?the magnitude of the fragmentation rate coefficient?. Journal of Polymer Science Part A, 2003, 41, 2833-2839.	2.3	131
297	Newtonian Flow Behavior of Hyperbranched High-Molecular-Weight Polyethylenes Produced with a Pdâ°'Diimine Catalyst and Its Dependence on Chain Topology. Macromolecules, 2003, 36, 2194-2197.	4.8	78
298	Controlled Grafting of Well-Defined Polymers on Hydrogen-Terminated Silicon Substrates by Surface-Initiated Atom Transfer Radical Polymerization. Journal of Physical Chemistry B, 2003, 107, 10198-10205.	2.6	119
299	Direct Synthesis of Well-Defined Quaternized Homopolymers and Diblock Copolymers via ATRP in Protic Media. Macromolecules, 2003, 36, 8268-8275.	4.8	141
300	Cyclic CVD Modification of Straight Pore Alumina Membranes. Langmuir, 2003, 19, 7307-7314.	3.5	24
301	Distribution of molecular weight and composition in diblock copolymers. E-Polymers, 2003, 3, .	3.0	0
302	Copolymerization of Propylene with Poly(ethylene-co-propylene) Macromonomer and Branch Chain-Length Dependence of Rheological Properties. Macromolecules, 2002, 35, 10062-10070.	4.8	66
303	ESR Study on Diffusion-Controlled Atom Transfer Radical Polymerization of Methyl Methacrylate and Ethylene Glycol Dimethacrylate. Macromolecules, 2002, 35, 9926-9933.	4.8	64
304	Molecular-Weight-Dependence on Domain Formation of Grafted Poly(ethylene-co-propylene) in a Poly(propylene) Matrix. Macromolecular Rapid Communications, 2002, 23, 470.	3.9	10
305	Effects of diffusion-controlled reactions on atom-transfer radical polymerization. AICHE Journal, 2002, 48, 2597-2608.	3.6	99
306	Continuous atom transfer radical block copolymerization of methacrylates. AICHE Journal, 2002, 48, 2609-2619.	3.6	58

#	Article	IF	CITATIONS
307	Atom-Transfer Radical Polymerization of 2-(N,N-Dimethylamino)ethyl Acrylate. Macromolecular Rapid Communications, 2002, 23, 1113-1117.	3.9	32
308	Acidic and basic hydrolysis of poly(N-vinylformamide). Journal of Applied Polymer Science, 2002, 86, 3412-3419.	2.6	80
309	Synthesis and flocculation performance of graft copolymer of N  -vinylformamide and poly(dimethylaminoethyl methacrylate) methyl chloride macromonomer. Colloid and Polymer Science, 2002, 280, 167-175.	2.1	10
310	Synthesis of comb-branched polyacrylamide with cationic poly[(2-dimethylamino)ethyl methacrylate dimethylsulfate] quat. Journal of Polymer Science Part A, 2002, 40, 2394-2405.	2.3	10
311	Structural analysis of polyethene prepared withrac-dimethylsilylbis(indenyl)zirconium dichloride/methylaluminoxane in a high-temperature, continuously stirred tank reactor. Journal of Polymer Science Part A, 2002, 40, 3292-3301.	2.3	15
312	Novel Cationic Macromonomers by Living Anionic Polymerization of (Dimethylamino)ethyl Methacrylate. Macromolecules, 2001, 34, 144-150.	4.8	25
313	Atom Transfer Radical Polymerization of Poly(ethylene glycol) Dimethacrylate. Macromolecules, 2001, 34, 1612-1618.	4.8	128
314	Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper Bromideâ^'Tetraethyldiethylenetriamine Grafted on Soluble and Recoverable Poly(ethylene-b-ethylene) Tj ETQqO	0 04rg/BT /(Dv øs lock 10 T
315	Soluble and Recoverable Support for Copper Bromide-Mediated Living Radical Polymerization. Macromolecules, 2001, 34, 3182-3185.	4.8	66
316	A Capping Method for Nitrogen Anion Initiated Living Anionic Polymerization for Synthesizing Alkyl Methacrylate Macromonomers. Macromolecules, 2001, 34, 376-381.	4.8	2
317	Effect of Ligand Spacer on Silica Gel Supported Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2001, 34, 5812-5818.	4.8	73
318	Kinetics and modeling of free radical polymerization of N -vinylformamide. Polymer, 2001, 42, 3077-3086.	3.8	44
319	Gel formation in atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate and ethylene glycol dimethacrylate. Journal of Polymer Science Part A, 2001, 39, 3780-3788.	2.3	71
320	UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. Journal of Applied Polymer Science, 2001, 82, 1107-1117.	2.6	64
321	Supported atom transfer radical polymerization of methyl methacrylate mediated by CuBr-tetraethyldiethylenetriamine grafted onto silica gel. Journal of Polymer Science Part A, 2001, 39, 1051-1059.	2.3	44
322	The Nature of Crosslinking inN-Vinylformamide Free-Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 212-214.	3.9	21
323	Synthesis of Styrenic-Terminated Methacrylate Macromonomers by Nitroanion-Initiated Living Anionic Polymerization. Macromolecular Rapid Communications, 2001, 22, 1399-1404.	3.9	6
324	Photopolymerization behavior of di(meth)acrylate oligomers. Journal of Materials Science, 2001, 36, 3599-3605.	3.7	30

#	Article	IF	CITATIONS
325	Modeling and semi-batch control of cross-link density distribution in the free-radical copolymerization of vinyl/divinyl monomers. Macromolecular Theory and Simulations, 2000, 9, 196-206.	1.4	10
326	Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst. Macromolecular Rapid Communications, 2000, 21, 956-959.	3.9	95
327	Atom transfer radical polymerization of alkyl methacrylates using T-triazine as ligand. Macromolecular Chemistry and Physics, 2000, 201, 1169-1175.	2.2	22
328	Synthesis of methacrylate macromonomers using silica gel supported atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2000, 201, 1387-1394.	2.2	48
329	Continuous solution copolymerization of ethylene with propylene using a constrained geometry catalyst system. Macromolecular Chemistry and Physics, 2000, 201, 2203-2209.	2.2	14
330	Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media. Journal of Polymer Science Part A, 2000, 38, 3821-3827.	2.3	87
331	Microvoids in unsaturated polyester resins containing poly(vinyl acetate) and composites with calcium carbonate and glass fibers. Polymer, 2000, 41, 3861-3870.	3.8	44
332	Long-chain branching in slurry polymerization of ethylene with zirconocene dichloride/modified methylaluminoxane. Polymer, 2000, 41, 3985-3991.	3.8	45
333	Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. Macromolecules, 2000, 33, 5427-5431.	4.8	109
334	Versatile Initiators for Macromonomer Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 5399-5404.	4.8	75
335	Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 1628-1635.	4.8	130
336	Long Chain Branching in Ethylene/Propylene Solution Polymerization Using Constrained Geometry Catalyst. Macromolecules, 2000, 33, 5770-5776.	4.8	32
337	Structural Analysis of Ethylene/Propylene Copolymers Synthesized with a Constrained Geometry Catalyst. Macromolecules, 2000, 33, 1157-1162.	4.8	49
338	Modeling and semi-batch control of cross-link density distribution in the free-radical copolymerization of vinyl/divinyl monomers. Macromolecular Theory and Simulations, 2000, 9, 196-206.	1.4	0
339	Long Chain Branching in Ethylene Polymerization Using Binary Homogeneous Metallocene Catalyst System. Polymer-Plastics Technology and Engineering, 1999, 7, 327-346.	0.7	11
340	Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer, 1999, 40, 1737-1744.	3.8	190
341	Peroxide crosslinking of isotactic and syndiotactic polypropylene. Polymer, 1999, 40, 2961-2968.	3.8	46
342	Flocculation of dilute titanium dioxide suspensions by graft cationic polyelectrolytes. Colloid and Polymer Science, 1999, 277, 108-114.	2.1	43

#	Article	IF	CITATIONS
343	Grafting polyelectrolytes onto polyacrylamide for flocculation 1. Polymer synthesis and characterization. Colloid and Polymer Science, 1999, 277, 115-122.	2.1	34
344	Grafting polyelectrolytes onto polyacrylamide for flocculation 2. Model suspension flocculation and sludge dewatering. Colloid and Polymer Science, 1999, 277, 123-129.	2.1	30
345	Synthesis and flocculation performance of graft and random copolymer microgels of acrylamide and diallyldimethylammonium chloride. Colloid and Polymer Science, 1999, 277, 939-946.	2.1	28
346	Grafting of polyelectrolytes onto polyacrylamide by reactive processing. Journal of Applied Polymer Science, 1999, 74, 1412-1416.	2.6	4
347	Analytical function for molecular weight development in living polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 961-964.	2.1	4
348	Modeling stable free-radical polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2692-2704.	2.1	50
349	ESR studies on oxidation state of titanocene and zirconocene catalysts. Journal of Polymer Science Part A, 1999, 37, 1465-1472.	2.3	18
350	Continuous solution copolymerization of ethylene and octene-1 with constrained geometry metallocene catalyst. Journal of Polymer Science Part A, 1999, 37, 2949-2957.	2.3	45
351	ESR study on styrene polymerization with CpTiCl3/MMAO: Effect of monomer addition on catalyst activity. Journal of Polymer Science Part A, 1999, 37, 3385-3390.	2.3	10
352	Modeling of molecular weight development in atom transfer radical polymerization. Macromolecular Theory and Simulations, 1999, 8, 29-37.	1.4	89
353	Modeling and analysis of high-impact poly(propylene) production processes, 1. Effect of chemical poisoning on particle size distribution and gel formation. Macromolecular Theory and Simulations, 1999, 8, 594-602.	1.4	2
354	Temperature rising elution fractionation and characterization of ethylene/octene-1 copolymers synthesized with constrained geometry catalyst. Macromolecular Chemistry and Physics, 1999, 200, 2146-2151.	2.2	18
355	Modeling of molecular weight development in atom transfer radical polymerization. Macromolecular Theory and Simulations, 1999, 8, 29-37.	1.4	3
356	Modeling and analysis of high-impact poly(propylene) production processes, 1. Effect of chemical poisoning on particle size distribution and gel formation. Macromolecular Theory and Simulations, 1999, 8, 594-602.	1.4	0
357	Preparation and characterization of graft copolymers of polyacrylamide and polyethylenimine. European Polymer Journal, 1998, 34, 1199-1205.	5.4	5
358	Modeling molecular weight distribution of comb-branched graft copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 705-714.	2.1	13
359	Peroxide induced crosslinking and degradation of polyvinyl chloride. Journal of Polymer Science Part A, 1998, 36, 851-860.	2.3	22
360	Long chain branching in ethylene polymerization using constrained geometry metallocene catalyst. Macromolecular Chemistry and Physics, 1998, 199, 2409-2416.	2.2	35

#	Article	IF	CITATIONS
361	Molecular weight distribution of comb polymers by chain polymerization with macromonomer. Polymer, 1998, 39, 5203-5208.	3.8	8
362	Effect of aluminoxane on semi-batch polymerization of ethylene using zirconocene dichloride. Polymer, 1998, 39, 6501-6511.	3.8	15
363	Kinetics of Long Chain Branching in Continuous Solution Polymerization of Ethylene Using Constrained Geometry Metallocene. Macromolecules, 1998, 31, 8677-8683.	4.8	113
364	Change in Molecular Weight Distribution During Formation and Degradation of Star Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 33-56.	2.2	5
365	ESR Study of Peroxide-Induced Cross-Linking of High Density Polyethylene. Macromolecules, 1998, 31, 4335-4341.	4.8	61
366	Analytical Functions for Molecular Weight and Branching Distributions in Star-, Comb-, and Random-Branched Polymers. Macromolecules, 1998, 31, 7519-7527.	4.8	23
367	ESR Study on Peroxide Modification of Polypropylene. Industrial & Engineering Chemistry Research, 1997, 36, 1130-1135.	3.7	30
368	Continuous Solution Polymerization of Ethylene Using Metallocene Catalyst System, Zirconocene Dichloride/Methylaluminoxane/Trimethylaluminum. Industrial & Engineering Chemistry Research, 1997, 36, 5074-5082.	3.7	31
369	Statistical crosslinking of heterochains. Polymer, 1997, 38, 5431-5439.	3.8	11
370	Molecular weight distribution of metallocene polymerization with long chain branching using a binary catalyst system. Macromolecular Theory and Simulations, 1997, 6, 793-803.	1.4	27
371	Improved accuracy and precision in the light-scattering characterization of homo- and copolymers in THF. Journal of Applied Polymer Science, 1997, 66, 1303-1316.	2.6	3
372	Experimental study of emulsion polymerization with crosslinking. Journal of Applied Polymer Science, 1997, 66, 935-957.	2.6	1
373	Theory of Nonrandom Cross-Linking:Â Free-Radical Polymer Grafting. Macromolecules, 1996, 29, 5688-5694.	4.8	9
374	Molecular Weight Distribution in Free-Radical Polymer Modification with Cross-Linking:Â Effect of Chain-Length-Dependent Termination. Macromolecules, 1996, 29, 456-461.	4.8	39
375	Polymer coupling and theory of onâ€random crosslinking: an analytical solution. Macromolecular Theory and Simulations, 1996, 5, 1105-1120.	1.4	5
376	Polyradical distribution in free radical crosslinking of polymer chains. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2099-2104.	2.1	18
377	Comments on ?A new copolymerization equation? (C. Zhou and S. Lin, J. Appl. Polym. Sci., 55, 641-643,) Tj ETQq	1 1 0.784 2.6	·314 rgBT /O
378	Effect of polyradicals on gel formation in free radical polymer modification. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 505-516.	2.1	21

#	Article	IF	CITATIONS
379	Kinetics of polyelectrolyte network formation in freeâ€radical copolymerization of acrylic acid and bisacrylamide. Macromolecular Symposia, 1995, 92, 253-300.	0.7	7
380	Mechanistic modelling of fluid permeation through compressible fiber beds. Chemical Engineering Science, 1995, 50, 3557-3572.	3.8	42
381	Gel formation in free radical polymerization via chain transfer and terminal branching. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 929-943.	2.1	25
382	Free radical degradation of polypropylene: Random chain scission. Polymer Engineering and Science, 1993, 33, 445-454.	3.1	71
383	E.s.r. study on permeation of oxygen in crosslinked polymers. Polymer, 1993, 34, 1383-1387.	3.8	18
384	Modeling of free-radical polymerization with crosslinking: monoradical assumption and stationary-state hypothesis. Macromolecules, 1993, 26, 3131-3136.	4.8	72
385	Kinetics of network formation via freeâ€radical mechanisms — Polymerization and polymer modification. Makromolekulare Chemie Macromolecular Symposia, 1993, 69, 247-256.	0.6	13
386	Kinetics of polymeric network synthesis via freeâ€radical mechanisms ―polymerization and polymer modification. Makromolekulare Chemie Macromolecular Symposia, 1992, 63, 135-182.	0.6	46
387	Influence of cross-link density distribution on network formation in free-radical copolymerization of vinyl/divinyl monomers. Macromolecules, 1992, 25, 5457-5464.	4.8	39
388	Conformation, environment and reactivity of radicals in copolymerization of methyl methacrylate/ethylene glycol dimethacrylate. Polymer, 1992, 33, 384-390.	3.8	25
389	Heat effects for free-radical polymerization in glass ampoule reactors. Polymer, 1991, 32, 3021-3025.	3.8	36
390	Termination of trapped radicals at elevated temperatures during copolymerization of MMA/EGDMA. Polymer, 1990, 31, 1726-1734.	3.8	43
391	Radical concentrations in free radical copolymerization of MMA/EGDMA. Polymer, 1990, 31, 154-159.	3.8	123
392	Radical trapping and termination in free-radical polymerization of methyl methacrylate. Macromolecules, 1990, 23, 1144-1150.	4.8	156
393	Chain-length-dependent termination for free radical polymerization. Macromolecules, 1989, 22, 3093-3098.	4.8	75