Joachim Wittbrodt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Notch1 deficiency alters the migratory behavior of developing T cells and calcium signaling in the thymus of medaka. European Journal of Immunology, 2022, 52, 261-269.	1.6	1
2	Antigen-Presenting Cells and T Cells Interact in a Specific Area of the Intestinal Mucosa Defined by the Ccl25-Ccr9 Axis in Medaka. Frontiers in Immunology, 2022, 13, 812899.	2.2	3
3	The Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biology, 2022, 23, 59.	3.8	6
4	Genomic variations and epigenomic landscape of the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biology, 2022, 23, 58.	3.8	5
5	Boosting targeted genome editing using the hei-tag. ELife, 2022, 11, .	2.8	10
6	Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. ELife, 2022, 11, .	2.8	12
7	Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis. ELife, 2022, 11, .	2.8	7
8	lgf signaling couples retina growth with body growth by modulating progenitor cell division. Development (Cambridge), 2021, 148, .	1.2	10
9	Deep learning-enhanced light-field imaging with continuous validation. Nature Methods, 2021, 18, 557-563.	9.0	75
10	A patient-based medaka <i>alg2</i> mutant as a model for hypo- <i>N</i> -glycosylation. Development (Cambridge), 2021, 148, .	1.2	2
11	αβ/γδT cell lineage outcome is regulated by intrathymic cell localization and environmental signals. Science Advances, 2021, 7, .	4.7	6
12	Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. ELife, 2021, 10, .	2.8	17
13	The C-Mannosylome of Human Induced Pluripotent Stem Cells Implies a Role for ADAMTS16 C-Mannosylation in Eye Development. Molecular and Cellular Proteomics, 2021, 20, 100092.	2.5	7
14	In vivo identification and validation of novel potential predictors for human cardiovascular diseases. PLoS ONE, 2021, 16, e0261572.	1.1	5
15	Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochemistry and Cell Biology, 2020, 154, 463-480.	0.8	6
16	Genetic and functional insights into the fractal structure of the heart. Nature, 2020, 584, 589-594.	13.7	86
17	Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nature Communications, 2020, 11, 5577.	5.8	96
18	Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Scientific Reports, 2020, 10, 2046.	1.6	57

#	Article	IF	CITATIONS
19	Lineage tracing of col10a1 cells identifies distinct progenitor populations for osteoblasts and joint cells in the regenerating fin of medaka (Oryzias latipes). Developmental Biology, 2019, 455, 85-99.	0.9	23
20	Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biology, 2019, 9, 180179.	1.5	13
21	Yap1b, a divergent Yap/Taz family member, cooperates with yap1 in survival and morphogenesis via common transcriptional targets. Development (Cambridge), 2019, 146, .	1.2	10
22	Instantaneous isotropic volumetric imaging of fast biological processes. Nature Methods, 2019, 16, 497-500.	9.0	89
23	Swift Large-scale Examination of Directed Genome Editing. PLoS ONE, 2019, 14, e0213317.	1.1	9
24	Enhanced in vivo-imaging in medaka by optimized anaesthesia, fluorescent protein selection and removal of pigmentation. PLoS ONE, 2019, 14, e0212956.	1.1	24
25	Novel components of germline sex determination acting downstream of foxl3 in medaka. Developmental Biology, 2019, 445, 80-89.	0.9	17
26	Retinal stem cells modulate proliferative parameters to coordinate post-embryonic morphogenesis in the eye of fish. ELife, 2019, 8, .	2.8	21
27	Loss and Rebirth of the Animal Microtubule Organizing Center: How Maternal Expression of Centrosomal Proteins Cooperates with the Sperm Centriole in Zygotic Centrosome Reformation. BioEssays, 2018, 40, e1700135.	1.2	10
28	TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biology, 2018, 8, .	1.5	28
29	Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Scientific Reports, 2018, 8, 16531.	1.6	28
30	Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9812-E9821.	3.3	16
31	Notch signalling patterns retinal composition by regulating <i>atoh7</i> during post-embryonic growth. Development (Cambridge), 2018, 145, .	1.2	12
32	Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. ELife, 2018, 7, .	2.8	39
33	Efficient single-copy HDR by 5' modified long dsDNA donors. ELife, 2018, 7, .	2.8	86
34	Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses. Nature Communications, 2017, 8, 14090.	5.8	11
35	Bifacial stem cell niches in fish and plants. Current Opinion in Genetics and Development, 2017, 45, 28-33.	1.5	14
36	Gastrulation in an annual killifish: Molecular and cellular events during germ layer formation in <i>Austrolebias</i> . Developmental Dynamics, 2017, 246, 812-826.	0.8	18

#	Article	IF	CITATIONS
37	Dynamics of in vivo ASC speck formation. Journal of Cell Biology, 2017, 216, 2891-2909.	2.3	60
38	col10a1 + osteoblast progenitors contribute to bone formation during lineage-restricted fin regeneration in Medaka. Mechanisms of Development, 2017, 145, S51.	1.7	0
39	Generation of DNA Constructs Using the Golden GATEway Cloning Method. Methods in Molecular Biology, 2017, 1472, 157-168.	0.4	0
40	De novo neurogenesis by targeted expression of Atoh7 to Müller glia cells. Development (Cambridge), 2016, 143, 1874-83.	1.2	24
41	An eye on light-sheet microscopy. Methods in Cell Biology, 2016, 133, 105-123.	0.5	12
42	iDamlDseq and iDEAR: An improved method and computational pipeline to profile chromatin-binding proteins. Development (Cambridge), 2016, 143, 4272-4278.	1.2	16
43	Identification, visualization and clonal analysis of intestinal stem cells in fish. Development (Cambridge), 2016, 143, 3470-3480.	1.2	42
44	Interactive Similarity Analysis and Error Detection in Large Tree Collections. Mathematics and Visualization, 2016, , 287-307.	0.4	2
45	MEPD: medaka expression pattern database, genes and more. Nucleic Acids Research, 2016, 44, D819-D821.	6.5	11
46	Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. ELife, 2016, 5, .	2.8	63
47	Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway. BMC Biotechnology, 2015, 15, 92.	1.7	5
48	CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PLoS ONE, 2015, 10, e0124633.	1.1	826
49	Handling Permutation in Sequence Comparison: Genome-Wide Enhancer Prediction in Vertebrates by a Novel Non-Linear Alignment Scoring Principle. PLoS ONE, 2015, 10, e0141487.	1.1	1
50	Cavefish eye loss in response to an early block in retinal differentiation progression. Development (Cambridge), 2015, 142, 743-752.	1.2	37
51	TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene, 2015, 34, 5729-5738.	2.6	71
52	Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells <i>inÂvivo</i> . EMBO Journal, 2015, 34, 1572-1588.	3.5	71
53	The Genomic and Genetic Toolbox of the Teleost Medaka (<i>Oryzias latipes</i>). Genetics, 2015, 199, 905-918.	1.2	91
54	Noninvasive In Toto Imaging of the Thymus Reveals Heterogeneous Migratory Behavior of Developing T Cells. Journal of Immunology, 2015, 195, 2177-2186.	0.4	21

#	Article	IF	CITATIONS
55	Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Research, 2015, 25, 41-56.	2.4	60
56	Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. ELife, 2015, 4, .	2.8	30
57	Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. ELife, 2015, 4, .	2.8	82
58	Hold your breath!. ELife, 2015, 4, e12523.	2.8	0
59	Differential responsiveness of distinct retinal domains to Atoh7. Mechanisms of Development, 2014, 133, 218-229.	1.7	8
60	Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish. G3: Genes, Genomes, Genetics, 2014, 4, 433-445.	0.8	54
61	The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. Journal of Cell Science, 2014, 127, 4381-95.	1.2	19
62	Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development (Cambridge), 2014, 141, 3472-3482.	1.2	64
63	Comparative epigenomics in distantly related teleost species identifies conserved <i>cis</i> -regulatory nodes active during the vertebrate phylotypic period. Genome Research, 2014, 24, 1075-1085.	2.4	47
64	Retinal neurogenesis. Development (Cambridge), 2014, 141, 241-244.	1.2	88
65	Tyrosine phosphorylation of <scp>LRP</scp> 6 by Src and Fer inhibits Wnt/β atenin signalling. EMBO Reports, 2014, 15, 1254-1267.	2.0	34
66	Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nature Communications, 2014, 5, 4046.	5.8	164
67	An eye on eye development. Mechanisms of Development, 2013, 130, 347-358.	1.7	105
68	Tumor angiogenesis is caused by single melanoma cells in a reactive oxygen species and NF-κB dependent manner. Journal of Cell Science, 2013, 126, 3862-72.	1.2	29
69	Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes and Development, 2013, 27, 1769-1786.	2.7	170
70	Efficient site-specific transgenesis and enhancer activity tests in medaka using PhiC31 integrase. Development (Cambridge), 2013, 140, 4287-4295.	1.2	34
71	The centriolar satellite protein SSX2IP promotes centrosome maturation. Journal of Cell Biology, 2013, 202, 81-95.	2.3	58
72	ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development (Cambridge), 2013, 140, 2787-2797.	1.2	37

#	Article	IF	CITATIONS
73	The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates. Scientific Reports, 2013, 3, 3217.	1.6	3
74	Golden GATEway Cloning $\hat{a} \in$ " A Combinatorial Approach to Generate Fusion and Recombination Constructs. PLoS ONE, 2013, 8, e76117.	1.1	60
75	Integration of Hedgehog and BMP signalling by the engrailed2a gene in the zebrafish myotome. Development (Cambridge), 2012, 139, 1885-1885.	1.2	3
76	Cis-regulatory properties of medaka synexpression groups. Development (Cambridge), 2012, 139, 917-928.	1.2	9
77	Quantitative Analysis of Embryogenesis: A Perspective for Light Sheet Microscopy. Developmental Cell, 2012, 23, 1111-1120.	3.1	49
78	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	13.7	15,516
79	Learning to segment dense cell nuclei with shape prior. , 2012, , .		4
80	Similarity analysis of cell movements in video microscopy. , 2012, , .		3
81	Numb/Numbl-Opo Antagonism Controls Retinal Epithelium Morphogenesis by Regulating Integrin Endocytosis. Developmental Cell, 2012, 23, 782-795.	3.1	67
82	Ubiquitinâ€specific proteaseâ€like 1 (USPL1) is a SUMO isopeptidase with essential, nonâ€catalytic functions. EMBO Reports, 2012, 13, 930-938.	2.0	143
83	A Novel Mammal-Specific Three Partite Enhancer Element Regulates Node and Notochord-Specific Noto Expression. PLoS ONE, 2012, 7, e47785.	1.1	10
84	Close association of olfactory placode precursors and cranial neural crest cells does not predestine cell mixing. Developmental Dynamics, 2012, 241, 1143-1154.	0.8	21
85	Fate Restriction and Multipotency in Retinal Stem Cells. Cell Stem Cell, 2011, 9, 553-562.	5.2	83
86	Combining Computational Prediction of Cis-Regulatory Elements with a New Enhancer Assay to Efficiently Label Neuronal Structures in the Medaka Fish. PLoS ONE, 2011, 6, e19747.	1.1	11
87	Integration of Hedgehog and BMP signalling by the <i>engrailed2a</i> gene in the zebrafish myotome. Development (Cambridge), 2011, 138, 755-765.	1.2	63
88	Digital Scanned Laser Light-Sheet Fluorescence Microscopy (DSLM) of Zebrafish and <i>Drosophila</i> Embryonic Development. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065839.	0.2	48
89	Deltr: Digital embryo lineage tree reconstructor. , 2011, , .		14
90	One for All—A Highly Efficient and Versatile Method for Fluorescent Immunostaining in Fish Embryos. PLoS ONE, 2011, 6, e19713.	1.1	141

#	Article	IF	CITATIONS
91	Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy. Nature Methods, 2010, 7, 637-642.	9.0	515
92	Using Trawler_standalone to discover overrepresented motifs in DNA and RNA sequences derived from various experiments including chromatin immunoprecipitation. Nature Protocols, 2010, 5, 323-334.	5.5	15
93	P109. Quantitative trait loci analysis in the Medaka (Oryzias latipes) species. Differentiation, 2010, 80, S53.	1.0	0
94	Nlcam modulates midline convergence during anterior neural plate morphogenesis. Developmental Biology, 2010, 339, 14-25.	0.9	46
95	<i>ojoplano</i> -mediated basal constriction is essential for optic cup morphogenesis. Development (Cambridge), 2009, 136, 2165-2175.	1.2	84
96	The zebrafish digital embryo: in toto reconstruction of zebrafish early embryonic development with digital scanned laser light sheet fluorescence microscopy. , 2009, , .		1
97	Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 991-1003.	1.8	52
98	Cloning of mouse ojoplano, a reticular cytoplasmic protein expressed during embryonic development. Gene Expression Patterns, 2009, 9, 562-567.	0.3	6
99	Identification of <i>starmakerâ€like</i> in medaka as a putative target gene of Pax2 in the otic vesicle. Developmental Dynamics, 2009, 238, 2860-2866.	0.8	27
100	Characterization of teleost Mdga1 using a geneâ€ŧrap approach in medaka (<i>Oryzias latipes</i>). Genesis, 2009, 47, 505-513.	0.8	12
101	Shaping the vertebrate eye. Current Opinion in Genetics and Development, 2009, 19, 511-517.	1.5	69
102	A global survey identifies novel upstream components of the Ath5 neurogenic network. Genome Biology, 2009, 10, R92.	13.9	28
103	Recent Advances in Meganuclease-and Transposon-Mediated Transgenesis of Medaka and Zebrafish. Methods in Molecular Biology, 2008, 461, 521-539.	0.4	41
104	Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science, 2008, 322, 1065-1069.	6.0	1,397
105	Analysis of mammalian gene batteries reveals both stable ancestral cores and highly dynamic regulatory sequences. Genome Biology, 2008, 9, R172.	13.9	5
106	Rapid identification of PAX2/5/8 direct downstream targets in the otic vesicle by combinatorial use of bioinformatics tools. Genome Biology, 2008, 9, R145.	13.9	18
107	Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2727-2732.	3.3	44
108	Birth and life of tissue macrophages and their migration in embryogenesis and inflammation in medaka. Journal of Leukocyte Biology, 2007, 81, 263-271.	1.5	46

#	Article	IF	CITATIONS
109	In Vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set. PLoS Genetics, 2007, 3, e159.	1.5	45
110	4DXpress: a database for cross-species expression pattern comparisons. Nucleic Acids Research, 2007, 36, D847-D853.	6.5	33
111	Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships. Developmental Biology, 2007, 304, 326-337.	0.9	37
112	New genes in the evolution of the neural crest differentiation program. Genome Biology, 2007, 8, R36.	13.9	42
113	Meganuclease and transposon mediated transgenesis in medaka. Genome Biology, 2007, 8, S10.	13.9	51
114	Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nature Methods, 2007, 4, 563-565.	9.0	71
115	Identification and lineage tracing of two populations of somatic gonadal precursors in medaka embryos. Developmental Biology, 2006, 295, 678-688.	0.9	85
116	Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nature Protocols, 2006, 1, 1133-1139.	5.5	126
117	A Small-Molecule FRET Probe To Monitor Phospholipase A2 Activity in Cells and Organisms. Angewandte Chemie - International Edition, 2006, 45, 508-512.	7.2	56
118	Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis, 2006, 44, 361-363.	0.8	69
119	Individual Cell Migration Serves as the Driving Force for Optic Vesicle Evagination. Science, 2006, 313, 1130-1134.	6.0	188
120	Differences in vertebrate microRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14385-14389.	3.3	251
121	Medial floor plate formation in zebrafish consists of two phases and requires trunk-derived Midkine-a. Genes and Development, 2005, 19, 897-902.	2.7	39
122	MEPD: a resource for medaka gene expression patterns. Bioinformatics, 2005, 21, 3195-3197.	1.8	24
123	Ancestry of Photic and Mechanic Sensation?. Science, 2005, 308, 1113-1114.	6.0	33
124	Differentiation of the Vertebrate Retina Is Coordinated by an FGF Signaling Center. Developmental Cell, 2005, 8, 565-574.	3.1	165
125	Cell cycle control by homeobox genes in development and disease. Seminars in Cell and Developmental Biology, 2005, 16, 449-460.	2.3	62
126	The discovery, positioning and verification of a set of transcription-associated motifs in vertebrates. Genome Biology, 2005, 6, R104.	13.9	45

#	Article	IF	CITATIONS
127	The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina. Development (Cambridge), 2004, 131, 2305-2315.	1.2	24
128	Direct interaction of geminin and Six3 in eye development. Nature, 2004, 427, 745-749.	13.7	225
129	Efficient activation of gene expression using a heat-shock inducible Gal4/Vp16-UAS system in medaka. , 2004, 4, 26.		27
130	Highly Efficient Zebrafish Transgenesis Mediated by the Meganuclease I-SceI. Methods in Cell Biology, 2004, 77, 381-401.	0.5	81
131	GSD: a genetic screen database. Mechanisms of Development, 2004, 121, 959-963.	1.7	6
132	Mutations affecting retina development in Medaka. Mechanisms of Development, 2004, 121, 703-714.	1.7	20
133	Genetic dissection of the formation of the forebrain in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 673-685.	1.7	17
134	In vivo time-lapse imaging in medaka – n-heptanol blocks contractile rhythmical movements. Mechanisms of Development, 2004, 121, 965-970.	1.7	10
135	Mutations affecting retinotectal axonal pathfinding in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 715-728.	1.7	17
136	Large-scale expression screening by automated whole-mount in situ hybridization. Mechanisms of Development, 2004, 121, 971-976.	1.7	50
137	Mutations affecting somite formation in the Medaka (Oryzias latipes). Mechanisms of Development, 2004, 121, 659-671.	1.7	18
138	Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria. Mechanisms of Development, 2004, 121, 791-802.	1.7	35
139	A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 647-658.	1.7	126
140	Medaka and zebrafish, an evolutionary twin study. Mechanisms of Development, 2004, 121, 629-637.	1.7	202
141	Current Status of Medaka Genetics and Genomics. Methods in Cell Biology, 2004, 77, 173-199.	0.5	8
142	Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy. Science, 2004, 305, 1007-1009.	6.0	2,103
143	Rapid chromosomal assignment of medaka mutants by bulked segregant analysis. Gene, 2004, 329, 159-165.	1.0	13
144	Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain. Science, 2004, 306, 869-871.	6.0	391

#	Article	IF	CITATIONS
145	Arthropod-like Expression Patterns of engrailed and wingless in the Annelid Platynereis dumerilii Suggest a Role in Segment Formation. Current Biology, 2003, 13, 1876-1881.	1.8	160
146	Loss of maternal Smad5 in zebrafish embryos affects patterning and morphogenesis of optic primordia. Developmental Dynamics, 2003, 227, 128-133.	0.8	14
147	Loss of eyes in zebrafish caused by mutation of chokh / rx3. EMBO Reports, 2003, 4, 894-899.	2.0	161
148	Transposon-mediated enhancer trapping in medaka. Gene, 2003, 322, 57-66.	1.0	78
149	MEPD: a Medaka gene expression pattern database. Nucleic Acids Research, 2003, 31, 72-74.	6.5	23
150	Six3 and Six6 activity is modulated by members of the groucho family. Development (Cambridge), 2003, 130, 185-195.	1.2	122
151	Cloning and expression of medaka Dachshund. Mechanisms of Development, 2002, 112, 203-206.	1.7	16
152	Expression of a medaka (Oryzias latipes) Bar homologue in the differentiating central nervous system and retina. Mechanisms of Development, 2002, 114, 193-196.	1.7	4
153	A screen for co-factors of Six3. Mechanisms of Development, 2002, 117, 103-113.	1.7	42
154	I-Scel meganuclease mediates highly efficient transgenesis in fish. Mechanisms of Development, 2002, 118, 91-98.	1.7	484
155	Medaka — a model organism from the far east. Nature Reviews Genetics, 2002, 3, 53-64.	7.7	672
156	<i>Six3</i> inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development (Cambridge), 2002, 129, 4057-4063.	1.2	141
157	Development of pigment-cup eyes in the polychaete <i>Platynereis dumerilii</i> and evolutionary conservation of larval eyes in Bilateria. Development (Cambridge), 2002, 129, 1143-1154.	1.2	169
158	Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development (Cambridge), 2002, 129, 1143-54.	1.2	79
159	Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development (Cambridge), 2002, 129, 4057-63.	1.2	57
160	Reconstructing the eyes of Urbilateria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1545-1563.	1.8	183
161	Five Nkx5 genes show differential expression patterns in anlagen of sensory organs in medaka: insight into the evolution of the gene family. Development Genes and Evolution, 2001, 211, 338-349.	0.4	26
162	Evolution of the bilaterian larval foregut. Nature, 2001, 409, 81-85.	13.7	238

#	Article	IF	CITATIONS
163	Medaka <i>eyeless</i> is the key factor linking retinal determination and eye growth. Development (Cambridge), 2001, 128, 4035-4044.	1.2	124
164	Medaka eyeless is the key factor linking retinal determination and eye growth. Development (Cambridge), 2001, 128, 4035-44.	1.2	46
165	An in situ hybridization screen for the rapid isolation of differentially expressed genes. Development Genes and Evolution, 2000, 210, 28-33.	0.4	21
166	Ectopic Sox3 activity elicits sensory placode formation. Mechanisms of Development, 2000, 95, 175-187.	1.7	98
167	A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mechanisms of Development, 2000, 97, 133-139.	1.7	135
168	The conditional medaka mutation <i>eyeless</i> uncouples patterning and morphogenesis of the eye. Development (Cambridge), 2000, 127, 1911-1919.	1.2	79
169	The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development (Cambridge), 2000, 127, 1911-9.	1.2	26
170	Morphogenesis of the optic tectum in the medaka (Oryzias latipes): A morphological and molecular study, with special emphasis on cell proliferation. , 1999, 413, 385-404.		80
171	The BMP-related protein Radar: a maintenance factor for dorsal neuroectoderm cells?. Mechanisms of Development, 1999, 85, 15-25.	1.7	16
172	Six3 overexpression initiates the formation of ectopic retina. Genes and Development, 1999, 13, 649-654.	2.7	232
173	Melanoma Loss-of-Function Mutants in Xiphophorus Caused by Xmrk-Oncogene Deletion and Gene Disruption by a Transposable Element. Genetics, 1999, 153, 1385-1394.	1.2	65
174	The midbrain-hindbrain boundary genetic cascade is activated ectopically in the diencephalon in response to the widespread expression of one of its components, the medaka gene <i>Ol-eng2</i> . Development (Cambridge), 1999, 126, 3769-3779.	1.2	40
175	Graded interference with FGF signalling reveals its dorsoventral asymmetry at the mid-hindbrain boundary. Development (Cambridge), 1999, 126, 5659-5667.	1.2	50
176	The midbrain-hindbrain boundary genetic cascade is activated ectopically in the diencephalon in response to the widespread expression of one of its components, the medaka gene Ol-eng2. Development (Cambridge), 1999, 126, 3769-79.	1.2	7
177	Graded interference with FGF signalling reveals its dorsoventral asymmetry at the mid-hindbrain boundary. Development (Cambridge), 1999, 126, 5659-67.	1.2	7
178	More genes in fish?. BioEssays, 1998, 20, 511-515.	1.2	264
179	Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mechanisms of Development, 1998, 74, 159-164.	1.7	145
180	Characterization and Developmentally Regulated Expression of Four Annexins in the Killifish Medaka. DNA and Cell Biology, 1998, 17, 835-847.	0.9	15

#	Article	IF	CITATIONS
181	Medaka <i>spalt</i> acts as a target gene of <i>hedgehog</i> signaling. Development (Cambridge), 1997, 124, 3147-3156.	1.2	116
182	Medaka spalt acts as a target gene of hedgehog signaling. Development (Cambridge), 1997, 124, 3147-56.	1.2	42
183	Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mechanisms of Development, 1996, 60, 233-239.	1.7	190
184	Zebrafish Radar: A new member of the TGF-Î ² superfamily defines dorsal regions of the neural plate and the embryonic retina. Mechanisms of Development, 1995, 49, 223-234.	1.7	80
185	Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: the role of maternal activin Genes and Development, 1994, 8, 1448-1462.	2.7	102
186	Autocrine stimulation of the Xmrk receptor tyrosine kinase in Xiphophorus melanoma cells and identification of a source for the physiological ligand Journal of Biological Chemistry, 1994, 269, 10423-10430.	1.6	26
187	Autocrine stimulation of the Xmrk receptor tyrosine kinase in Xiphophorus melanoma cells and identification of a source for the physiological ligand. Journal of Biological Chemistry, 1994, 269, 10423-30.	1.6	23
188	Ligand-dependent tumor induction in medakafish embryos by a Xmrk receptor tyrosine kinase transgene. Oncogene, 1994, 9, 1517-25.	2.6	41
189	The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma EMBO Journal, 1992, 11, 4239-4246.	3.5	61
190	The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. EMBO Journal, 1992, 11, 4239-46.	3.5	20
191	Analysis of heterologous and homologous promoters and enhancers in vitro and in vivo by gene transfer into Japanese medaka (Oryzias latipes) Xiphophorus. Molecular Marine Biology and Biotechnology, 1992, 1, 326-37.	0.4	8
192	Analysis of an esterase linked to a locus involved in the regulation of the melanoma oncogene and isolation of polymorphic marker sequences inXiphophorus. Biochemical Genetics, 1991, 29, 509-524.	0.8	16
193	Purification and cDNA-derived sequence of adenylosuccinate synthetase from Dictyostelium discoideum. Journal of Biological Chemistry, 1991, 266, 2480-5.	1.6	19
194	Analysis of an esterase linked to a locus involved in the regulation of the melanoma oncogene and isolation of polymorphic marker sequences inXiphophorus. Biochemical Genetics, 1991, 29, 509-524.	0.8	1
195	An inexpensive and versatile computer-controlled PCR machine using a Peltier element as thermoelectric heat pump. Trends in Genetics, 1989, 5, 202-203.	2.9	10
196	Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature, 1989, 341, 415-421.	13.7	346
197	RFLP for an EGF-receptor related gene associated with the melanoma oncogene locus ofXiphophorus maculatus. Nucleic Acids Research, 1988, 16, 7212-7212.	6.5	13