## Nils Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701180/publications.pdf Version: 2024-02-01



NUS ANDERSON

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A New Class of Unstable Modes of Rotating Relativistic Stars. Astrophysical Journal, 1998, 502, 708-713.                                                                                 | 4.5  | 524       |
| 2  | Gravitational waves from hot young rapidly rotating neutron stars. Physical Review D, 1998, 58, .                                                                                        | 4.7  | 367       |
| 3  | Towards gravitational wave asteroseismology. Monthly Notices of the Royal Astronomical Society, 1998, 299, 1059-1068.                                                                    | 4.4  | 354       |
| 4  | THE R-MODE INSTABILITY IN ROTATING NEUTRON STARS. International Journal of Modern Physics D, 2001, 10, 381-441.                                                                          | 2.1  | 300       |
| 5  | The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.                                                       | 4.0  | 287       |
| 6  | Relativistic Fluid Dynamics: Physics for Many Different Scales. Living Reviews in Relativity, 2007, 10, 1.                                                                               | 26.7 | 245       |
| 7  | <i>Colloquium</i> : Measuring the neutron star equation of state using x-ray timing. Reviews of Modern Physics, 2016, 88, .                                                              | 45.6 | 234       |
| 8  | Gravitational Waves and Pulsating Stars: What Can We Learn from Future Observations?. Physical<br>Review Letters, 1996, 77, 4134-4137.                                                   | 7.8  | 219       |
| 9  | Pulsar Glitches: The Crust is not Enough. Physical Review Letters, 2012, 109, 241103.                                                                                                    | 7.8  | 187       |
| 10 | On the Relevance of therâ€Mode Instability for Accreting Neutron Stars and White Dwarfs.<br>Astrophysical Journal, 1999, 516, 307-314.                                                   | 4.5  | 185       |
| 11 | Gravitational Radiation Limit on the Spin of Young Neutron Stars. Astrophysical Journal, 1999, 510,<br>846-853.                                                                          | 4.5  | 175       |
| 12 | Modelling magnetically deformed neutron stars. Monthly Notices of the Royal Astronomical Society,<br>0, 385, 531-542.                                                                    | 4.4  | 163       |
| 13 | Gravitational waves from instabilities in relativistic stars. Classical and Quantum Gravity, 2003, 20, R105-R144.                                                                        | 4.0  | 159       |
| 14 | Neutron star asteroseismology. Axial crust oscillations in the Cowling approximation. Monthly<br>Notices of the Royal Astronomical Society, 2007, 374, 256-268.                          | 4.4  | 151       |
| 15 | The inverse problem for pulsating neutron stars: a 'fingerprint analysis' for the supranuclear equation of state. Monthly Notices of the Royal Astronomical Society, 2001, 320, 307-315. | 4.4  | 144       |
| 16 | Gravitational waves from neutron stars: promises and challenges. General Relativity and Gravitation, 2011, 43, 409-436.                                                                  | 2.0  | 139       |
| 17 | On the dynamics of superfluid neutron star cores. Monthly Notices of the Royal Astronomical Society, 2001, 328, 1129-1143.                                                               | 4.4  | 118       |
| 18 | Magnetohydrodynamics of superfluid and superconducting neutron star cores. Monthly Notices of the Royal Astronomical Society, 2011, 410, 805-829.                                        | 4.4  | 114       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Freely precessing neutron stars: model and observations. Monthly Notices of the Royal Astronomical Society, 2001, 324, 811-824.                                                                                             | 4.4  | 110       |
| 20 | Mutual friction in superfluid neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 368, 162-170.                                                                                                         | 4.4  | 99        |
| 21 | [CLC][ITAL]r[/ITAL][/CLC]-Mode Runaway and Rapidly Rotating Neutron Stars. Astrophysical Journal, 2000, 534, L75-L78.                                                                                                       | 4.5  | 98        |
| 22 | Mountains on neutron stars: accreted versus non-accreted crusts. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1423-1439.                                                                                   | 4.4  | 96        |
| 23 | How viscous is a superfluid neutron star core?. Nuclear Physics A, 2005, 763, 212-229.                                                                                                                                      | 1.5  | 93        |
| 24 | The Nature of Low T /   W   Dynamical Instabilities in Differentially Rotating Stars. Astrophysical Journal, 2005, 618, L37-L40.                                                                                            | 4.5  | 93        |
| 25 | Strange stars as persistent sources of gravitational waves. Monthly Notices of the Royal Astronomical Society, 2002, 337, 1224-1232.                                                                                        | 4.4  | 91        |
| 26 | Gravitational waves from freely precessing neutron stars. Monthly Notices of the Royal Astronomical Society, 2002, 331, 203-220.                                                                                            | 4.4  | 88        |
| 27 | Elastic or magnetic? A toy model for global magnetar oscillations with implications for<br>quasi-periodic oscillations during flares. Monthly Notices of the Royal Astronomical Society: Letters,<br>2006, 371, L74-L77.    | 3.3  | 81        |
| 28 | Superfluid neutron star turbulence. Monthly Notices of the Royal Astronomical Society, 2007, 381, 747-756.                                                                                                                  | 4.4  | 81        |
| 29 | Slowly rotating general relativistic superfluid neutron stars. Classical and Quantum Gravity, 2001, 18, 969-1002.                                                                                                           | 4.0  | 80        |
| 30 | Slowly rotating superfluid Newtonian neutron star model with entrainment. Astronomy and Astrophysics, 2002, 381, 178-196.                                                                                                   | 5.1  | 80        |
| 31 | Hydrodynamical Trigger Mechanism for Pulsar Glitches. Physical Review Letters, 2009, 102, 141101.                                                                                                                           | 7.8  | 72        |
| 32 | Pinning down the superfluid and measuring masses using pulsar glitches. Science Advances, 2015, 1, e1500578.                                                                                                                | 10.3 | 71        |
| 33 | Are Pulsar Glitches Triggered by a Superfluid Two-Stream Instability?. Physical Review Letters, 2003, 90,<br>091101.                                                                                                        | 7.8  | 70        |
| 34 | A flux-conservative formalism for convective and dissipative multi-fluid systems, with application to Newtonian superfluid neutron stars. Classical and Quantum Gravity, 2006, 23, 5505-5529.                               | 4.0  | 70        |
| 35 | Revealing the Physics of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>r</mml:mi></mml:math> Modes in Low-Mass X-Ray Binaries. Physical Review<br>Letters, 2011, 107, 101101. | 7.8  | 68        |
| 36 | The Spin Distribution of Fast-spinning Neutron Stars in Low-mass X-Ray Binaries: Evidence for Two<br>Subpopulations. Astrophysical Journal, 2017, 850, 106.                                                                 | 4.5  | 66        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Oscillations of general relativistic superfluid neutron stars. Physical Review D, 2002, 66, .                                                                                        | 4.7  | 63        |
| 38 | Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star.<br>Physical Review D, 1998, 58, .                                             | 4.7  | 62        |
| 39 | Rotational modes of relativistic stars: Analytic results. Physical Review D, 2000, 63, .                                                                                             | 4.7  | 62        |
| 40 | r modes and mutual friction in rapidly rotating superfluid neutron stars. Monthly Notices of the<br>Royal Astronomical Society, 2009, 397, 1464-1485.                                | 4.4  | 62        |
| 41 | Are Neutron Stars with Crystalline Color-Superconducting Cores Relevant for the LIGO Experiment?.<br>Physical Review Letters, 2007, 99, 231101.                                      | 7.8  | 59        |
| 42 | Towards real neutron star seismology: accounting for elasticity and superfluidity. Monthly Notices of the Royal Astronomical Society, 2012, 419, 638-655.                            | 4.4  | 57        |
| 43 | Rotational evolution of young pulsars due to superfluid decoupling. Nature Physics, 2012, 8, 787-789.                                                                                | 16.7 | 56        |
| 44 | The superfluid two-stream instability. Monthly Notices of the Royal Astronomical Society, 2004, 354, 101-110.                                                                        | 4.4  | 55        |
| 45 | Ekman layer damping of r modes revisited. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1311-1321.                                                                   | 4.4  | 55        |
| 46 | Rotational modes of relativistic stars: Numerical results. Physical Review D, 2003, 68, .                                                                                            | 4.7  | 54        |
| 47 | Modelling the spin equilibrium of neutron stars in low-mass X-ray binaries without gravitational radiation. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1153-1164. | 4.4  | 54        |
| 48 | Superfluid signatures in magnetar seismology. Monthly Notices of the Royal Astronomical Society, 2009, 396, 894-899.                                                                 | 4.4  | 54        |
| 49 | Magnetic field evolution in superconducting neutron stars. Monthly Notices of the Royal<br>Astronomical Society, 2015, 453, 671-681.                                                 | 4.4  | 51        |
| 50 | Probing Neutron-Star Superfluidity with Gravitational-Wave Data. Physical Review Letters, 2001, 87, 241101.                                                                          | 7.8  | 49        |
| 51 | Temperature-dependent pulsations of superfluid neutron stars. Monthly Notices of the Royal<br>Astronomical Society, 2006, 372, 1776-1790.                                            | 4.4  | 49        |
| 52 | Pulsar spin-down: the glitch-dominated rotation of PSR J0537â^'6910. Monthly Notices of the Royal<br>Astronomical Society, 2018, 473, 1644-1655.                                     | 4.4  | 48        |
| 53 | Magnetars: super(ficially) hot and super(fluid) cool. Monthly Notices of the Royal Astronomical<br>Society, 2012, 422, 2632-2641.                                                    | 4.4  | 47        |
| 54 | Superradiance Resonance Cavity Outside Rapidly Rotating Black Holes. Physical Review Letters, 2000,<br>84, 4537-4540.                                                                | 7.8  | 46        |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hydromagnetic equilibrium in non-barotropic multifluid neutron stars. Monthly Notices of the Royal<br>Astronomical Society, 2012, 420, 1263-1272.                            | 4.4  | 44        |
| 56 | Variational multi-fluid dynamics and causal heat conductivity. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2010, 466, 1373-1387. | 2.1  | 43        |
| 57 | Thermal dynamics in general relativity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 738-759.                             | 2.1  | 43        |
| 58 | Neutron stars in the laboratory. International Journal of Modern Physics D, 2017, 26, 1730015.                                                                               | 2.1  | 42        |
| 59 | Crust-core coupling in rotating neutron stars. Physical Review D, 2006, 74, .                                                                                                | 4.7  | 41        |
| 60 | Oscillations of dissipative superfluid neutron stars. Physical Review D, 2009, 79, .                                                                                         | 4.7  | 41        |
| 61 | The transient gravitational-wave sky. Classical and Quantum Gravity, 2013, 30, 193002.                                                                                       | 4.0  | 40        |
| 62 | Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity.<br>Physical Review D, 2015, 92, .                                               | 4.7  | 40        |
| 63 | Oscillations of rapidly rotating stratified neutron stars. Monthly Notices of the Royal Astronomical Society, 2009, 394, 730-741.                                            | 4.4  | 39        |
| 64 | Equilibrium spin pulsars unite neutron star populations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3664-3669.                                            | 4.4  | 38        |
| 65 | Modelling neutron star mountains. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5570-5582.                                                                   | 4.4  | 37        |
| 66 | Glitch Rises as a Test for Rapid Superfluid Coupling in Neutron Stars. Astrophysical Journal, 2018, 865, 23.                                                                 | 4.5  | 34        |
| 67 | Relativistic fluid dynamics: physics for many different scales. Living Reviews in Relativity, 2021, 24, 1.                                                                   | 26.7 | 34        |
| 68 | The spin evolution of nascent neutron stars. Monthly Notices of the Royal Astronomical Society, 2002, 333, 943-951.                                                          | 4.4  | 33        |
| 69 | ÂQuick and dirty methods for studying black-hole resonances. Classical and Quantum Gravity, 2003, 20,<br>3441-3463.                                                          | 4.0  | 33        |
| 70 | Stability of Precessing Superfluid Neutron Stars. Physical Review Letters, 2008, 100, 081101.                                                                                | 7.8  | 32        |
| 71 | Inertial modes of non-stratified superfluid neutron stars. Monthly Notices of the Royal Astronomical<br>Society, 2004, 348, 625-637.                                         | 4.4  | 28        |
| 72 | Oscillations of rapidly rotating superfluid stars. Monthly Notices of the Royal Astronomical Society, 2009, 396, 951-963.                                                    | 4.4  | 28        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics.<br>Classical and Quantum Gravity, 2015, 32, 075008.                                                                  | 4.0 | 28        |
| 74 | Axial quasi-normal modes of neutron stars: accounting for the superfluid in the crust. Classical and Quantum Gravity, 2009, 26, 155016.                                                                                  | 4.0 | 27        |
| 75 | Do superfluid instabilities prevent neutron star precession?. Monthly Notices of the Royal<br>Astronomical Society, 2009, 394, 1908-1924.                                                                                | 4.4 | 27        |
| 76 | Tidal deformations of neutron stars: The role of stratification and elasticity. Physical Review D, 2011, 84, .                                                                                                           | 4.7 | 27        |
| 77 | Using gravitational-wave data to constrain dynamical tides in neutron star binaries. Physical Review<br>D, 2018, 97, .                                                                                                   | 4.7 | 27        |
| 78 | Tidal deformations of neutron stars with elastic crusts. Physical Review D, 2020, 101, .                                                                                                                                 | 4.7 | 27        |
| 79 | Modelling neutron star mountains in relativity. Monthly Notices of the Royal Astronomical Society, 2021, 507, 116-128.                                                                                                   | 4.4 | 27        |
| 80 | The dynamics of pulsar glitches: contrasting phenomenology with numerical evolutions. Monthly Notices of the Royal Astronomical Society, 2010, , .                                                                       | 4.4 | 26        |
| 81 | Gravitational waves from transient neutron star <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mi>f</mml:mi><br/>-mode oscillations. Physical Review D, 2020, 101, .</mml:math<br> | 4.7 | 26        |
| 82 | A consistent first-order model for relativistic heat flow. Classical and Quantum Gravity, 2011, 28, 195023.                                                                                                              | 4.0 | 25        |
| 83 | Tidal Deformations of Hybrid Stars with Sharp Phase Transitions and Elastic Crusts. Astrophysical<br>Journal, 2020, 895, 28.                                                                                             | 4.5 | 25        |
| 84 | Waves and instabilities in dissipative rotating superfluid neutron stars. Monthly Notices of the Royal<br>Astronomical Society, 0, 385, 335-348.                                                                         | 4.4 | 24        |
| 85 | r-modes in low temperature color-flavor-locked superconducting quark stars. Physical Review D, 2010, 82, .                                                                                                               | 4.7 | 24        |
| 86 | Buoyancy and g-modes in young superfluid neutron stars. Monthly Notices of the Royal Astronomical<br>Society, 2016, 455, 1489-1511.                                                                                      | 4.4 | 24        |
| 87 | Ejector and propeller spin-down: how might a superluminous supernova millisecond magnetar become<br>the 6.67 h pulsar in RCW 103. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464,<br>L65-L69.     | 3.3 | 24        |
| 88 | Thermal aspects of neutron star mergers. Physical Review D, 2021, 104, .                                                                                                                                                 | 4.7 | 24        |
| 89 | Lagrangian perturbation theory of non-relativistic rotating superfluid stars. Monthly Notices of the Royal Astronomical Society, 2004, 355, 918-928.                                                                     | 4.4 | 23        |
| 90 | Oscillations of general relativistic multifluid/multilayer compact stars. Physical Review D, 2008, 78, .                                                                                                                 | 4.7 | 23        |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Time evolution of the linear perturbations of a rotating Newtonian polytrope. Monthly Notices of the<br>Royal Astronomical Society, 2002, 334, 933-940.            | 4.4 | 22        |
| 92  | Exploring the effective tidal deformability of neutron stars. Physical Review D, 2020, 101, .                                                                      | 4.7 | 22        |
| 93  | Relativistic two-stream instability. General Relativity and Gravitation, 2010, 42, 413-433.                                                                        | 2.0 | 21        |
| 94  | The intimate relation between the low T/W instability and the corotation point. Monthly Notices of the Royal Astronomical Society, 2015, 446, 555-565.             | 4.4 | 20        |
| 95  | A Superfluid Perspective on Neutron Star Dynamics. Universe, 2021, 7, 17.                                                                                          | 2.5 | 20        |
| 96  | A Gravitational-Wave Perspective on Neutron-Star Seismology. Universe, 2021, 7, 97.                                                                                | 2.5 | 20        |
| 97  | Resistive relativistic magnetohydrodynamics from a charged multifluids perspective. Physical Review D, 2012, 86, .                                                 | 4.7 | 19        |
| 98  | Population synthesis of accreting neutron stars emitting gravitational waves. Monthly Notices of the Royal Astronomical Society, 2019, 488, 99-110.                | 4.4 | 19        |
| 99  | The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system. Classical and Quantum Gravity, 2019, 36, 105004. | 4.0 | 18        |
| 100 | The phenomenology of dynamical neutron star tides. Monthly Notices of the Royal Astronomical Society, 2021, 503, 533-539.                                          | 4.4 | 18        |
| 101 | CRUSTAL FAILURE DURING BINARY INSPIRAL. Astrophysical Journal Letters, 2012, 749, L36.                                                                             | 8.3 | 17        |
| 102 | Dynamics of dissipative multifluid neutron star cores. Physical Review D, 2012, 86, .                                                                              | 4.7 | 16        |
| 103 | Lagrangian perturbation theory for rotating magnetic stars. Monthly Notices of the Royal Astronomical Society, 2007, 377, 630-644.                                 | 4.4 | 15        |
| 104 | ENTROPY ENTRAINMENT AND DISSIPATION IN FINITE TEMPERATURE SUPERFLUIDS. International Journal of Modern Physics D, 2011, 20, 1215-1233.                             | 2.1 | 15        |
| 105 | Dynamical tides in neutron stars: the impact of the crust. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1273-1293.                                | 4.4 | 15        |
| 106 | Gravitational-Wave Astronomy. , 2019, , .                                                                                                                          |     | 15        |
| 107 | Nonlinear radial oscillations of neutron stars. Physical Review D, 2009, 80, .                                                                                     | 4.7 | 14        |
| 108 | Quantised vortices and mutual friction in relativistic superfluids. Classical and Quantum Gravity, 2016, 33, 245010.                                               | 4.0 | 14        |

| #   | Article                                                                                                                                                         | IF              | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 109 | Hydrodynamics of rapidly rotating superfluid neutron stars with mutual friction. Monthly Notices of the Royal Astronomical Society, 2011, 413, 47-70.           | 4.4             | 13        |
| 110 | Superfluid instability of r-modes in "differentially rotating―neutron stars. Physical Review D, 2013, 87,                                                       | 4.7             | 13        |
| 111 | Beyond ideal magnetohydrodynamics: from fibration to 3  +  1 foliation. Classical and Quantum 2017, 34, 125003.                                                 | Gravity,<br>4.0 | 13        |
| 112 | Beyond ideal magnetohydrodynamics: resistive, reactive and relativistic plasmas. Classical and Quantum Gravity, 2017, 34, 125002.                               | 4.0             | 13        |
| 113 | A variational approach to resistive relativistic plasmas. Classical and Quantum Gravity, 2017, 34, 125001.                                                      | 4.0             | 13        |
| 114 | Instabilities in neutron-star postmerger remnants. Physical Review D, 2020, 102, .                                                                              | 4.7             | 12        |
| 115 | Modelling the dynamics of superfluid neutron stars. Astrophysics and Space Science, 2007, 308, 395-402.                                                         | 1.4             | 11        |
| 116 | Lagrangian perturbation theory for a superfluid immersed in an elastic neutron star crust. Monthly<br>Notices of the Royal Astronomical Society, 2011, , no-no. | 4.4             | 11        |
| 117 | Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows. Physical Review D, 2017, 96, .                                | 4.7             | 11        |
| 118 | Merger-inspired rotation laws and the low-T/W instability in neutron stars. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5904-5915.            | 4.4             | 11        |
| 119 | The g-mode spectrum of reactive neutron star cores. Monthly Notices of the Royal Astronomical Society, 0, , .                                                   | 4.4             | 10        |
| 120 | Does elasticity stabilize a magnetic neutron star?. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2636-2647.                                    | 4.4             | 10        |
| 121 | Multifluid cosmology: An illustration of fundamental principles. Physical Review D, 2012, 85, .                                                                 | 4.7             | 9         |
| 122 | A minimal model for finite temperature superfluid dynamics. Classical and Quantum Gravity, 2013, 30, 235025.                                                    | 4.0             | 9         |
| 123 | Early neutron star evolution in high-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2020, 494, 44-49.                                  | 4.4             | 9         |
| 124 | The I-Love-Q Relations for Superfluid Neutron Stars. Universe, 2021, 7, 111.                                                                                    | 2.5             | 9         |
| 125 | Covariant approach to relativistic large-eddy simulations: The fibration picture. Physical Review D, 2021, 104, .                                               | 4.7             | 9         |
| 126 | COSMIC RECYCLING OF MILLISECOND PULSARS. Astrophysical Journal Letters, 2011, 730, L36.                                                                         | 8.3             | 7         |

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The nonlinear development of the relativistic two-stream instability. Classical and Quantum Gravity, 2013, 30, 145007.                                          | 4.0  | 6         |
| 128 | Dissipation Triggers Dynamical Two-Stream Instability. Particles, 2019, 2, 457-480.                                                                             | 1.7  | 6         |
| 129 | Exploring universality in neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5480-5484.                                        | 4.4  | 6         |
| 130 | Linearizing a non-linear formulation for general relativistic dissipative fluids. Classical and Quantum Gravity, 2021, 38, 065009.                              | 4.0  | 6         |
| 131 | Oscillations in the neutron star crust. Astrophysics and Space Science, 2007, 308, 581-583.                                                                     | 1.4  | 5         |
| 132 | Whispers from the Edge of Physics. Journal of Astrophysics and Astronomy, 2017, 38, 1.                                                                          | 1.0  | 5         |
| 133 | The physics of non-ideal general relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3737-3750.                    | 4.4  | 5         |
| 134 | Formulating bulk viscosity for neutron star simulations. Physical Review D, 2022, 105, .                                                                        | 4.7  | 5         |
| 135 | Pinning Down the Superfluid and Nuclear Equation of State and Measuring Neutron Star Mass Using Pulsar Glitches. , 2017, , .                                    |      | 4         |
| 136 | A variational approach to relativistic superfluid vortex elasticity. Classical and Quantum Gravity, 2020, 37, 085014.                                           | 4.0  | 4         |
| 137 | GRAVITATIONAL-WAVE INSTABILITIES IN ROTATING STARS. International Journal of Modern Physics A, 2002, 17, 2645-2650.                                             | 1.5  | 3         |
| 138 | A toy model for global magnetar oscillation. Astrophysics and Space Science, 2007, 308, 607-611.                                                                | 1.4  | 3         |
| 139 | Cosmological two-stream instability. Physics Letters, Section B: Nuclear, Elementary Particle and<br>High-Energy Physics, 2012, 715, 289-292.                   | 4.1  | 3         |
| 140 | A Multifluid Perspective on Multimessenger Modeling. Frontiers in Astronomy and Space Sciences, 2021, 8, .                                                      | 2.8  | 3         |
| 141 | Dynamical tides in superfluid neutron stars. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1494-1510.                                           | 4.4  | 3         |
| 142 | Black hole dynamics: A survey of black hole physics from the point of view of perturbation theory.<br>Journal of Astrophysics and Astronomy, 1999, 20, 269-280. | 1.0  | 2         |
| 143 | The road to gravitational-wave astronomy. Progress in Particle and Nuclear Physics, 2011, 66, 239-248.                                                          | 14.4 | 1         |
| 144 | Gravitational waves from neutron stars. Proceedings of the International Astronomical Union, 2009, 5, 137-140.                                                  | 0.0  | 0         |

| #   | Article                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Trying to catch the wave. Nature Physics, 2010, 6, 484-485.                                                             | 16.7 | Ο         |
| 146 | Relativistic multi-fluid dynamics, superfluids and heat conduction. , 2010, , .                                         |      | 0         |
| 147 | Neutron star seismology. Proceedings of the International Astronomical Union, 2012, 8, 159-159.                         | 0.0  | Ο         |
| 148 | Magnetars are super hot and super cool. Proceedings of the International Astronomical Union, 2012,<br>8, 396-398.       | 0.0  | 0         |
| 149 | GRAVITATIONAL WAVES: PROBING THE EXTREMES OF PHYSICS. , 2003, , .                                                       |      | Ο         |
| 150 | Modelling the dynamics of superfluid neutron stars. , 2007, , 395-402.                                                  |      | 0         |
| 151 | Inferring the dense nuclear matter equation of state with neutron star tides. EPJ Web of Conferences, 2022, 258, 07002. | 0.3  | 0         |