Gabor Juhasz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700447/publications.pdf

Version: 2024-02-01

105	16,818	42	100
papers	citations	h-index	g-index
111	111	111	27218
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
4	Direct Induction of Autophagy by Atg1 Inhibits Cell Growth and Induces Apoptotic Cell Death. Current Biology, 2007, 17, 1-11.	3.9	1,011
5	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
6	Programmed Autophagy in the Drosophila Fat Body Is Induced by Ecdysone through Regulation of the PI3K Pathway. Developmental Cell, 2004, 7, 179-192.	7.0	434
7	Microenvironmental autophagy promotes tumour growth. Nature, 2017, 541, 417-420.	27.8	379
8	Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in <i>Drosophila</i> . Genes and Development, 2007, 21, 3061-3066.	5.9	378
9	Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification. Nature Communications, 2015, 6, 7007.	12.8	314
10	Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in <i>Drosophila</i> . Journal of Cell Biology, 2013, 201, 531-539.	5.2	307
11	The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in <i>Drosophila </i> . Journal of Cell Biology, 2008, 181, 655-666.	5. 2	299
12	Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in <i>Drosophila</i> . Molecular Biology of the Cell, 2014, 25, 1338-1354.	2.1	247
13	Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan. Cell Metabolism, 2014, 19, 431-444.	16.2	221
14	Autophagosome-Lysosome Fusion. Journal of Molecular Biology, 2020, 432, 2462-2482.	4.2	184
15	The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Molecular Biology of the Cell, 2016, 27, 3132-3142.	2.1	173
16	Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. ELife, 2016, 5, .	6.0	161
17	Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochemical Society Transactions, 2009, 37, 232-236.	3.4	146
18	Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila. PLoS ONE, 2012, 7, e44214.	2.5	145

#	Article	IF	Citations
19	Autophagy: A Forty-Year Search for a Missing Membrane Source. PLoS Biology, 2006, 4, e36.	5.6	118
20	Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death and Differentiation, 2007, 14, 1181-1190.	11.2	107
21	Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Molecular Biology of the Cell, 2014, 25, 522-531.	2.1	106
22	How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods, 2015, 75, 151-161.	3.8	106
23	Rab2 promotes autophagic and endocytic lysosomal degradation. Journal of Cell Biology, 2017, 216, 1937-1947.	5.2	98
24	The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Letters, 2003, 543, 154-158.	2.8	93
25	Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development (Cambridge), 2006, 133, 1457-1465.	2.5	93
26	Myc-Driven Overgrowth Requires Unfolded Protein Response-Mediated Induction of Autophagy and Antioxidant Responses in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003664.	3.5	81
27	Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in <i>Drosophila</i> Atg1 in <i>Drosophila</i>	9.1	75
28	Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genetics, 2018, 14, e1007359.	3.5	73
29	Autophagy in <i>Drosophila </i> : From Historical Studies to Current Knowledge. BioMed Research International, 2014, 2014, 1-24.	1.9	68
30	Exploring Autophagy in Drosophila. Cells, 2017, 6, 22.	4.1	67
31	Molecular mechanisms of developmentally programmed crinophagy in <i>Drosophila</i> . Journal of Cell Biology, 2018, 217, 361-374.	5.2	58
32	Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments. Autophagy, 2012, 8, 1875-1876.	9.1	57
33	Matrix metalloproteinase-9 activity increased by two different types of epileptic seizures that do not induce neuronal death: A possible role in homeostatic synaptic plasticity. Neurochemistry International, 2010, 56, 799-809.	3.8	54
34	Retromer Ensures the Degradation of Autophagic Cargo by Maintaining Lysosome Function in Drosophila. Traffic, 2015, 16, 1088-1107.	2.7	54
35	SNF4A \hat{i} 3, the Drosophila AMPK \hat{i} 3 subunit is required for regulation of developmental and stress-induced autophagy. Autophagy, 2008, 4, 476-486.	9.1	53
36	Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biology, 2013, 14, 29.	3.0	53

#	Article	lF	Citations
37	Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nature Communications, 2019, 10, 1318.	12.8	53
38	Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy, 2012, 8, 1124-1135.	9.1	52
39	AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects. Autophagy, 2016, 12, 273-286.	9.1	50
40	MiniCORVET is a Vps8-containing early endosomal tether in Drosophila. ELife, 2016, 5, .	6.0	50
41	Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore. Open Biology, 2012, 2, 110032.	3.6	47
42	Different effects of <i>Atg2</i> and <i>Atg18</i> mutations on Atg8a and Atg9 trafficking during starvation in Drosophila. FEBS Letters, 2014, 588, 408-413.	2.8	46
43	Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Scientific Reports, 2018, 8, 4644.	3.3	46
44	On the Fly: Recent Progress on Autophagy and Aging in Drosophila. Frontiers in Cell and Developmental Biology, 2019, 7, 140.	3.7	46
45	Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy, 2013, 9, 1642-1646.	9.1	43
46	<i>Drosophila</i> Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy, 2015, 11, 1358-1372.	9.1	41
47	Drosophila basement membrane collagen col4a1 mutations cause severe myopathy. Matrix Biology, 2012, 31, 29-37.	3.6	39
48	Drosophila Arl8 is a general positive regulator of lysosomal fusion events. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 533-544.	4.1	39
49	Experimental Control and Characterization of Autophagy in Drosophila. Methods in Molecular Biology, 2008, 445, 125-133.	0.9	38
50	DAAM Is Required for Thin Filament Formation and Sarcomerogenesis during Muscle Development in Drosophila. PLoS Genetics, 2014, 10, e1004166.	3.5	38
51	The Putative HORMA Domain Protein Atg101 Dimerizes and Is Required for Starvation-Induced and Selective Autophagy in <i>Drosophila </i> Selective Autophagy in <i< td=""><td>1.9</td><td>36</td></i<>	1.9	36
52	Loss of Atg16 delays the alcohol-induced sedation response via regulation of Corazonin neuropeptide production in Drosophila. Scientific Reports, 2016, 6, 34641.	3.3	35
53	<i>Drosophila</i> Atg16 promotes enteroendocrine cell differentiation via regulation of intestinal Slit/Robo signaling. Development (Cambridge), 2017, 144, 3990-4001.	2.5	31
54	Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy, 2019, 15, 1757-1773.	9.1	29

#	Article	IF	CITATIONS
55	The electroretinogram and visual evoked potential of freely moving rats. Brain Research Bulletin, 2001, 56, 7-14.	3.0	28
56	Analysis of Drosophila Atg8 proteins reveals multiple lipidation-independent roles. Autophagy, 2021, 17, 2565-2575.	9.1	27
57	Hid can induce, but is not required for autophagy in polyploid larval Drosophila tissues. European Journal of Cell Biology, 2005, 84, 491-502.	3.6	26
58	Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in <i>Drosophila</i> . Open Biology, 2016, 6, 150169.	3.6	26
59	Drosophila Atg7: Required for stress resistance, longevity and neuronal homeostasis, but not for metamorphosis. Autophagy, 2008, 4, 357-358.	9.1	24
60	Sperm-Leucylaminopeptidases are required for male fertility as structural components of mitochondrial paracrystalline material in Drosophila melanogaster sperm. PLoS Genetics, 2019, 15, e1007987.	3.5	24
61	Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt. ELife, 2019, 8, .	6.0	22
62	Crinophagy mechanisms and its potential role in human health and disease. Progress in Molecular Biology and Translational Science, 2020, 172, 239-255.	1.7	19
63	Testis-Specific Bb8 Is Essential in the Development of Spermatid Mitochondria. PLoS ONE, 2016, 11, e0161289.	2.5	19
64	Stem cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. DMM Disease Models and Mechanisms, 2016, 9, 501-12.	2.4	18
65	JNK modifies neuronal metabolism to promote proteostasis and longevity. Aging Cell, 2019, 18, e12849.	6.7	18
66	Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biology, 2021, 38, 101808.	9.0	18
67	Lipid profiles of autophagic structures isolated from wild type and Atg2 mutant Drosophila. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158868.	2.4	18
68	A novel role for the Drosophila epsin (lqf): Involvement in autophagy. Autophagy, 2009, 5, 636-648.	9.1	17
69	Zonda is a novel early component of the autophagy pathway in <i>Drosophila</i> . Molecular Biology of the Cell, 2017, 28, 3070-3081.	2.1	17
70	Understanding the importance of autophagy in human diseases using Drosophila. Journal of Genetics and Genomics, 2019, 46, 157-169.	3.9	16
71	Genes encoding cuticular proteins are components of the Nimrod gene cluster in Drosophila. Insect Biochemistry and Molecular Biology, 2017, 87, 45-54.	2.7	15
72	Drosophila Atg9 regulates the actin cytoskeleton via interactions with profilin and Ena. Cell Death and Differentiation, 2020, 27, 1677-1692.	11.2	15

#	Article	IF	CITATIONS
73	The Warburg Micro Syndromeâ€essociated Rab3GAPâ€Rab18 module promotes autolysosome maturation through the Vps34 Complex I. FEBS Journal, 2021, 288, 190-211.	4.7	15
74	A mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17. Journal of Cell Biology, 2016, 214, 241-243.	5.2	13
75	Small GTPases controlling autophagy-related membrane traffic in yeast and metazoans. Small GTPases, 2018, 9, 465-471.	1.6	13
76	GMAP is an Atg8a-interacting protein that regulates Golgi turnover in Drosophila. Cell Reports, 2022, 39, 110903.	6.4	13
77	Silencing of PARP2 Blocks Autophagic Degradation. Cells, 2020, 9, 380.	4.1	12
78	Autophagy in Development, Cell Differentiation, and Homeodynamics: From Molecular Mechanisms to Diseases and Pathophysiology. BioMed Research International, 2014, 2014, 1-2.	1.9	11
79	Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity. Autophagy, 2015, 11, 1209-1215.	9.1	11
80	Investigating Non-selective Autophagy in Drosophila. Methods in Molecular Biology, 2019, 1880, 589-600.	0.9	11
81	Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells, 2021, 10, 3537.	4.1	10
82	Visible light induces matrix metalloproteinase-9 expression in rat eye. Journal of Neurochemistry, 2007, 103, 2224-2233.	3.9	9
83	iFly: The eye of the fruit fly as a model to study autophagy and related trafficking pathways. Experimental Eye Research, 2016, 144, 90-98.	2.6	8
84	Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons. PLoS Genetics, 2021, 17, e1009731.	3.5	8
85	Doxycycline could aggravate the absence-like epileptic seizures of WAG/Rij rats via matrix metalloproteinase inhibition. Neurochemistry International, 2011, 59, 563-566.	3.8	7
86	Cellular Immune Response Involving Multinucleated Giant Hemocytes with Two-Step Genome Amplification in the Drosophilid <i>Zaprionus indianus</i> . Journal of Innate Immunity, 2020, 12, 257-272.	3.8	7
87	The interplay between pathogens and Atg8 family proteins: thousandâ€faced interactions. FEBS Open Bio, 2021, 11, 3237-3252.	2.3	7
88	A genetic model with specifically impaired autophagosome–lysosome fusion. Autophagy, 2013, 9, 1251-1252.	9.1	6
89	Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in <i>Drosophila</i> . Life Science Alliance, 2021, 4, e202000965.	2.8	6
90	Loss of ubiquitinated protein autophagy is compensated by persistent cnc/NFE2L2/Nrf2 antioxidant responses. Autophagy, 2022, 18, 2385-2396.	9.1	6

#	Article	IF	CITATIONS
91	Sec20 is Required for Autophagic and Endocytic Degradation Independent of Golgi-ER Retrograde Transport. Cells, 2019, 8, 768.	4.1	5
92	Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. Journal of Innate Immunity, 2022, 14, 335-354.	3.8	5
93	The tumor suppressor archipelago E3 ligase is required for spermatid differentiation in Drosophila testis. Scientific Reports, 2021, 11, 8422.	3.3	4
94	Identification of New Interactions between Endolysosomal Tethering Factors. Journal of Molecular Biology, 2021, 433, 166965.	4.2	4
95	A POSSIBLE APPROACH TO STUDY AUTOPHAGY IN DROSOPHILA. Acta Biologica Hungarica, 2001, 52, 485-490.	0.7	3
96	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
97	Drosophila Rab39 Attenuates Lysosomal Degradation. International Journal of Molecular Sciences, 2021, 22, 10635.	4.1	2
98	Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in. Life Science Alliance, 2021, 4, .	2.8	2
99	Isolation and characterization of novel plekhm1 and def8 mutant alleles in Drosophila. Biologia Futura, 2022, 73, 149-155.	1.4	2
100	The legacy of J \tilde{A}_i nos Kov \tilde{A}_i cs: a lifelong devotion to advancing autophagy research. Autophagy, 2022, 18, 2017-2019.	9.1	1
101	Autophagy researchers. Autophagy, 2013, 9, 815-818.	9.1	0
102	A role of autophagy in spinocerebellar ataxiaâ€"Rare exception or general principle?. Autophagy, 2016, 12, 1208-1209.	9.1	0
103	Painting a picture of autophagy in <i>Drosophila</i> . Autophagy, 2019, 15, 1859-1859.	9.1	0
104	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
105	Selective autophagy and Golgi quality control in <i>Drosophila</i> . Autophagy, 0, , 1-2.	9.1	O