## Mark R Wills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700301/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Whole bloodâ€based measurement of SARSâ€CoVâ€2â€specific T cells reveals asymptomatic infection and vaccine immunogenicity in healthy subjects and patients with solidâ€organ cancers. Immunology, 2022, 165, 250-259.                                | 4.4  | 21        |
| 2  | B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Reports, 2022, 38, 110393.                                                                                                                                       | 6.4  | 29        |
| 3  | Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. Journal of Clinical Investigation, 2021, 131, .                                                                                         | 8.2  | 17        |
| 4  | Comparative Cell Surface Proteomic Analysis of the Primary Human T Cell and Monocyte Responses to Type I Interferon. Frontiers in Immunology, 2021, 12, 600056.                                                                                       | 4.8  | 7         |
| 5  | Bromodomain proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic<br>therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, .                        | 7.1  | 25        |
| 6  | Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.                                                                                                                                                    | 27.8 | 648       |
| 7  | Latent Cytomegalovirus-Driven Recruitment of Activated CD4+ T Cells Promotes Virus Reactivation.<br>Frontiers in Immunology, 2021, 12, 657945.                                                                                                        | 4.8  | 10        |
| 8  | HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses, 2021, 13, 817.                                                                                                                                                                | 3.3  | 25        |
| 9  | A BMPR2/YY1 Signaling Axis Is Required for Human Cytomegalovirus Latency in Undifferentiated<br>Myeloid Cells. MBio, 2021, 12, e0022721.                                                                                                              | 4.1  | 11        |
| 10 | Longitudinal analysis reveals that delayed bystander CD8+ TÂcell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity, 2021, 54, 1257-1275.e8.                                                               | 14.3 | 230       |
| 11 | Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies. Nature Communications, 2021, 12, 4436.                                                                                               | 12.8 | 16        |
| 12 | Using Primary Human Cells to Analyze Human Cytomegalovirus Biology. Methods in Molecular<br>Biology, 2021, 2244, 51-81.                                                                                                                               | 0.9  | 9         |
| 13 | Bromodomain Inhibitors as Therapeutics for Herpesvirus-Related Disease: All BETs Are Off?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 329.                                                                                           | 3.9  | 10        |
| 14 | The CD4+ T Cell Response to Human Cytomegalovirus in Healthy and Immunocompromised People.<br>Frontiers in Cellular and Infection Microbiology, 2020, 10, 202.                                                                                        | 3.9  | 53        |
| 15 | Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging.<br>GeroScience, 2020, 42, 495-504.                                                                                                                     | 4.6  | 29        |
| 16 | Assessing Anti-HCMV Cell Mediated Immune Responses in Transplant Recipients and Healthy Controls<br>Using a Novel Functional Assay. Frontiers in Cellular and Infection Microbiology, 2020, 10, 275.                                                  | 3.9  | 9         |
| 17 | Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet, The, 2020, 395, 888-898. | 13.7 | 98        |
| 18 | Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner. PLoS Pathogens, 2020, 16, e1008426.                                                                              | 4.7  | 9         |

MARK R WILLS

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Human cytomegalovirus major immediate early transcripts arise predominantly from the canonical<br>major immediate early promoter in reactivating progenitor-derived dendritic cells. Journal of General<br>Virology, 2020, 101, 635-644. | 2.9 | 13        |
| 20 | Human Cytomegalovirus Upregulates Expression of HCLS1 Resulting in Increased Cell Motility and Transendothelial Migration during Latency. IScience, 2019, 20, 60-72.                                                                     | 4.1 | 15        |
| 21 | Distinct Roles of Extracellular Domains in the Epstein-Barr Virus-Encoded BILF1 Receptor for<br>Signaling and Major Histocompatibility Complex Class I Downregulation. MBio, 2019, 10, .                                                 | 4.1 | 18        |
| 22 | Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in<br>lytic and latent infection. Medical Microbiology and Immunology, 2019, 208, 375-389.                                                  | 4.8 | 43        |
| 23 | A novel, sensitive dual-indicator cell line for detection and quantification of inducible, replication-competent latent HIV-1 from reservoir cells. Scientific Reports, 2019, 9, 19325.                                                  | 3.3 | 1         |
| 24 | Interferon-Responsive Genes Are Targeted during the Establishment of Human Cytomegalovirus<br>Latency. MBio, 2019, 10, .                                                                                                                 | 4.1 | 33        |
| 25 | An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Frontiers in Microbiology, 2019, 10, 2233.                                                                                                               | 3.5 | 18        |
| 26 | No evidence of ongoing evolution in replication competent latent HIV-1 in a patient followed up for two years. Scientific Reports, 2018, 8, 2639.                                                                                        | 3.3 | 14        |
| 27 | Extracellular Lactate: A Novel Measure of T Cell Proliferation. Journal of Immunology, 2018, 200, 1220-1226.                                                                                                                             | 0.8 | 39        |
| 28 | Utilizing TAPBPR to promote exogenous peptide loading onto cell surface MHC I molecules.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9353-E9361.                                     | 7.1 | 35        |
| 29 | Nanopore sequencing and full genome de novo assembly of human cytomegalovirus TB40/E reveals clonal diversity and structural variations. BMC Genomics, 2018, 19, 577.                                                                    | 2.8 | 17        |
| 30 | Human Cytomegalovirus (HCMV)-Specific CD4 <sup>+</sup> T Cells Are Polyfunctional and Can<br>Respond to HCMV-Infected Dendritic Cells <i>In Vitro</i> . Journal of Virology, 2017, 91, .                                                 | 3.4 | 71        |
| 31 | A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir. Scientific Reports, 2017, 7, 43231.                                                                    | 3.3 | 36        |
| 32 | Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To<br>Maintain Latent Infection. MBio, 2017, 8, .                                                                                         | 4.1 | 82        |
| 33 | CMV immune evasion and manipulation of the immune system with aging. GeroScience, 2017, 39, 273-291.                                                                                                                                     | 4.6 | 69        |
| 34 | Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition<br>by Natural Killer Cells. Frontiers in Immunology, 2017, 8, 298.                                                                       | 4.8 | 45        |
| 35 | Latent Cytomegalovirus (CMV) Infection Does Not Detrimentally Alter T Cell Responses in the Healthy<br>Old, But Increased Latent CMV Carriage Is Related to Expanded CMV-Specific T Cells. Frontiers in<br>Immunology, 2017, 8, 733.     | 4.8 | 59        |
| 36 | Human Cytomegalovirus Delays Neutrophil Apoptosis and Stimulates the Release of a Prosurvival Secretome. Frontiers in Immunology, 2017, 8, 1185.                                                                                         | 4.8 | 22        |

MARK R WILLS

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Innovations in the quantitative virus outgrowth assay and its use in clinical trials. Retrovirology, 2017, 14, 58.                                                                                                                                                                        | 2.0  | 6         |
| 38 | HCMV activation of ERK-MAPK drives a multi-factorial response promoting the survival of infected myeloid progenitors. Journal of Molecular Biochemistry, 2017, 6, 13-25.                                                                                                                  | 0.1  | 11        |
| 39 | The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary<br>Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Scientific Reports, 2016, 6, 31205.                                                                                       | 3.3  | 69        |
| 40 | Leukocyte Immunoglobulin-Like Receptor 1-Expressing Human Natural Killer Cell Subsets Differentially<br>Recognize Isolates of Human Cytomegalovirus through the Viral Major Histocompatibility Complex<br>Class I Homolog UL18. Journal of Virology, 2016, 90, 3123-3137.                 | 3.4  | 27        |
| 41 | Human cytomegalovirus miR-UL112-1 promotes the down-regulation of viral immediate early-gene<br>expression during latency to prevent T-cell recognition of latently infected cells. Journal of General<br>Virology, 2016, 97, 2387-2398.                                                  | 2.9  | 43        |
| 42 | How understanding immunology contributes to managing CMV disease in immunosuppressed patients:<br>now and in future. Medical Microbiology and Immunology, 2015, 204, 307-316.                                                                                                             | 4.8  | 41        |
| 43 | The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?. Cellular and Molecular Immunology, 2015, 12, 128-138.                                                                                                          | 10.5 | 107       |
| 44 | Human Cytomegalovirus Latency: Targeting Differences in the Latently Infected Cell with a View to Clearing Latent Infection. New Journal of Science, 2014, 2014, 1-10.                                                                                                                    | 1.0  | 21        |
| 45 | Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell<br>Reports, 2014, 8, 1365-1379.                                                                                                                                                          | 6.4  | 591       |
| 46 | Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular<br>IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA<br>hsa-miR-92a. Journal of Virology, 2014, 88, 13947-13955.                              | 3.4  | 53        |
| 47 | Human Cytomegalovirus Latency-Associated Proteins Elicit Immune-Suppressive IL-10 Producing CD4+ T<br>Cells. PLoS Pathogens, 2013, 9, e1003635.                                                                                                                                           | 4.7  | 68        |
| 48 | The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation. EMBO<br>Journal, 2012, 31, 3596-3606.                                                                                                                                                        | 7.8  | 74        |
| 49 | Human cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation<br>(CD)4 <sup>+</sup> T-cell migration and suppression of effector function. Proceedings of the National<br>Academy of Sciences of the United States of America, 2012, 109, 14538-14543. | 7.1  | 78        |
| 50 | Efficient Human Cytomegalovirus Reactivation Is Maturation Dependent in the Langerhans Dendritic<br>Cell Lineage and Can Be Studied using a CD14 <sup>+</sup> Experimental Latency Model. Journal of<br>Virology, 2012, 86, 8507-8515.                                                    | 3.4  | 45        |
| 51 | Human cytomegalovirus immunity and immune evasion. Virus Research, 2011, 157, 151-160.                                                                                                                                                                                                    | 2.2  | 225       |
| 52 | Preface. Virus Research, 2011, 157, 127.                                                                                                                                                                                                                                                  | 2.2  | 0         |
| 53 | Intracellular Sequestration of the NKG2D Ligand ULBP3 by Human Cytomegalovirus. Journal of Immunology, 2010, 185, 1093-1102.                                                                                                                                                              | 0.8  | 61        |
| 54 | NKG2D Ligand MICA Is Retained in the <i>cis</i> -Golgi Apparatus by Human Cytomegalovirus Protein<br>UL142. Journal of Virology, 2009, 83, 12345-12354.                                                                                                                                   | 3.4  | 105       |

MARK R WILLS

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dynamics of T cell memory in human cytomegalovirus infection. Medical Microbiology and<br>Immunology, 2008, 197, 83-96.                                                                                                                           | 4.8 | 72        |
| 56 | Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects<br>against NK cell cytotoxicity. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 1656-1661.      | 7.1 | 159       |
| 57 | Natural killer cell evasion by an E3 ubiquitin ligase from Kaposi's sarcoma-associated herpesvirus.<br>Biochemical Society Transactions, 2008, 36, 459-463.                                                                                       | 3.4 | 31        |
| 58 | Rapid CD8+ T Cell Repertoire Focusing and Selection of High-Affinity Clones into Memory Following<br>Primary Infection with a Persistent Human Virus: Human Cytomegalovirus. Journal of Immunology,<br>2007, 179, 3203-3213.                      | 0.8 | 124       |
| 59 | Differential costimulation through CD137 (4–1BB) restores proliferation of human virus-specific<br>"effector memory―(CD28Ⱂ CD45RAHI) CD8+ T cells. Blood, 2007, 110, 4360-4366.                                                                   | 1.4 | 82        |
| 60 | Regulation of NKG2D Ligand Gene Expression. Human Immunology, 2006, 67, 159-169.                                                                                                                                                                  | 2.4 | 97        |
| 61 | Large HIV-specific CD8+ cytotoxic T-lymphocyte (CTL) clones reduce their overall size but maintain<br>high frequencies of memory CTL following highly active antiretroviral therapy. Immunology, 2006, 118,<br>25-38.                             | 4.4 | 14        |
| 62 | Human Cytomegalovirus Encodes an MHC Class I-Like Molecule (UL142) That Functions to Inhibit NK<br>Cell Lysis. Journal of Immunology, 2005, 175, 7457-7465.                                                                                       | 0.8 | 125       |
| 63 | Long-Term Stable Expanded Human CD4+ T Cell Clones Specific for Human Cytomegalovirus Are<br>Distributed in Both CD45RAhigh and CD45ROhigh Populations. Journal of Immunology, 2004, 173,<br>5843-5851.                                           | 0.8 | 40        |
| 64 | Human cytomegalovirus-specific immunity following haemopoietic stem cell transplantation. Blood<br>Reviews, 2003, 17, 259-264.                                                                                                                    | 5.7 | 28        |
| 65 | Late diversification in the clonal composition of human cytomegalovirus-specific CD8+ T cells following allogeneic hemopoietic stem cell transplantation. Blood, 2003, 102, 3427-3438.                                                            | 1.4 | 59        |
| 66 | Identification of Naive or Antigen-Experienced Human CD8+ T Cells by Expression of Costimulation and<br>Chemokine Receptors: Analysis of the Human Cytomegalovirus-Specific CD8+ T Cell Response. Journal<br>of Immunology, 2002, 168, 5455-5464. | 0.8 | 189       |
| 67 | Functional Heterogeneity and High Frequencies of Cytomegalovirus-Specific CD8 <sup>+</sup> T<br>Lymphocytes in Healthy Seropositive Donors. Journal of Virology, 2000, 74, 8140-8150.                                                             | 3.4 | 396       |
| 68 | The Memory Cytotoxic T-Lymphocyte (CTL) Response to Human Cytomegalovirus Infection Contains<br>Individual Peptide-Specific CTL Clones That Have Undergone Extensive Expansion In Vivo. Journal of<br>Virology, 1999, 73, 2099-2108.              | 3.4 | 186       |
| 69 | Progressive loss of IL-2-expandable HIV-1-specific cytotoxic T lymphocytes during asymptomatic HIV infection. European Journal of Immunology, 1998, 28, 3564-3576.                                                                                | 2.9 | 15        |
|    |                                                                                                                                                                                                                                                   |     |           |

HCMV: immunobiology and host response. , 0, , 780-794.