Toshiya Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700119/publications.pdf

Version: 2024-02-01

87 6,328 41 76
papers citations h-index g-index

88 88 88 7694
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Role of the TOM Complex in Protein Import into Mitochondria: Structural Views. Annual Review of Biochemistry, 2022, 91, 679-703.	11.1	31
2	Crystal structure of Tam41 cytidine diphosphate diacylglycerol synthase from a Firmicutes bacterium. Journal of Biochemistry, 2022, 171, 429-441.	1.7	1
3	GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. Journal of Cell Biology, 2022, 221, .	5.2	9
4	Structural overview of the translocase of the mitochondrial outer membrane complex. Biophysics and Physicobiology, 2022, 19, n/a.	1.0	4
5	Structural snapshot of the mitochondrial protein import gate. FEBS Journal, 2021, 288, 5300-5310.	4.7	14
6	Phosphatidylserine flux into mitochondria unveiled by organelleâ€ŧargeted <i>EscherichiaÂcoli</i> phosphatidylserine synthase PssA. FEBS Journal, 2021, 288, 3285-3299.	4.7	5
7	Mitochondrial sorting and assembly machinery operates by \hat{l}^2 -barrel switching. Nature, 2021, 590, 163-169.	27.8	60
8	Membrane Protein Insertion Mechanism by Mitochondrial Sorting and Assembly Machinery Complex. Seibutsu Butsuri, 2021, 61, 392-394.	0.1	0
9	Fertilization-Coupled Sperm Nuclear Fusion Is Required for Normal Endosperm Nuclear Proliferation. Plant and Cell Physiology, 2020, 61, 29-40.	3.1	17
10	Organelle membrane-specific chemical labeling and dynamic imaging in living cells. Nature Chemical Biology, 2020, 16, 1361-1367.	8.0	59
11	The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Communications Biology, 2020, 3, 99.	4.4	28
12	ERdj3B-Mediated Quality Control Maintains Anther Development at High Temperatures. Plant Physiology, 2020, 182, 1979-1990.	4.8	19
13	Structural basis for interorganelle phospholipid transport mediated by VAT-1. Journal of Biological Chemistry, 2020, 295, 3257-3268.	3.4	8
14	Lipid homeostasis in mitochondria. Biological Chemistry, 2020, 401, 821-833.	2.5	46
15	Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from Mitochondria to the ER. Molecular Cell, 2019, 76, 191-205.e10.	9.7	81
16	Role of the membrane potential in mitochondrial protein unfolding and import. Scientific Reports, 2019, 9, 7637.	3.3	23
17	Regulation of the protein entry gate assembly by mitochondrial porin. Current Genetics, 2019, 65, 1161-1163.	1.7	1
18	CdsA is involved in biosynthesis of glycolipid MPlase essential for membrane protein integration in vivo. Scientific Reports, 2019, 9, 1372.	3.3	23

#	Article	IF	Citations
19	Advanced In Vitro Assay System to Measure Phosphatidylserine and Phosphatidylethanolamine Transport at ER/Mitochondria Interface. Methods in Molecular Biology, 2019, 1949, 57-67.	0.9	4
20	Porin Associates with Tom22 to Regulate the Mitochondrial Protein Gate Assembly. Molecular Cell, 2019, 73, 1044-1055.e8.	9.7	47
21	Myristoyl group-aided protein import into the mitochondrial intermembrane space. Scientific Reports, 2019, 9, 1185.	3.3	14
22	Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 2019, 575, 395-401.	27.8	146
23	Maintenance of Cardiolipin and Crista Structure Requires Cooperative Functions of Mitochondrial Dynamics and Phospholipid Transport. Cell Reports, 2019, 26, 518-528.e6.	6.4	48
24	Organelle contact zones as sites for lipid transfer. Journal of Biochemistry, 2019, 165, 115-123.	1.7	44
25	Multifaceted roles of porin in mitochondrial protein and lipid transport. Biochemical Society Transactions, 2019, 47, 1269-1277.	3.4	15
26	Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Scientific Reports, 2018, 8, 6175.	3.3	85
27	Shuttle mission in the mitochondrial intermembrane space. EMBO Journal, 2018, 37, .	7.8	2
28	Inactivation of cardiolipin synthase triggers changes in mitochondrial morphology. FEBS Letters, 2018, 592, 209-218.	2.8	20
29	Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES. Journal of Cell Biology, 2018, 217, 959-974.	5. 2	116
30	Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial \hat{l}^2 -barrel proteins. Journal of Cell Biology, 2018, 217, 3091-3108.	5.2	72
31	Phospholipid transfer by ERMES components. Aging, 2018, 10, 528-529.	3.1	2
32	Role of Intra- and Inter-mitochondrial Membrane Contact Sites in Yeast Phospholipid Biogenesis. Advances in Experimental Medicine and Biology, 2017, 997, 121-133.	1.6	22
33	Mitochondrial translocator complexes analyzed by Blue-Native PAGE. Denki Eido, 2017, 61, 100-102.	0.0	0
34	Quality control of nonstop membrane proteins at the ER membrane and in the cytosol. Scientific Reports, 2016, 6, 30795.	3.3	30
35	Identification of multiâ€copy suppressors for endoplasmic reticulumâ€mitochondria tethering proteins in <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2016, 590, 3061-3070.	2.8	11
36	Characterization of the targeting signal in mitochondrial \hat{l}^2 -barrel proteins. Nature Communications, 2016, 7, 12036.	12.8	80

#	Article	lF	Citations
37	A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Scientific Reports, 2016, 6, 30777.	3.3	85
38	Phosphatidylserine transport by Ups2–Mdm35 in respiration-active mitochondria. Journal of Cell Biology, 2016, 214, 77-88.	5.2	67
39	Molecular architecture of the active mitochondrial protein gate. Science, 2015, 349, 1544-1548.	12.6	169
40	Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria. Nature Communications, 2015, 6, 7922.	12.8	75
41	Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. ELife, 2015, 4, .	6.0	20
42	Different Sets of ER-Resident J-Proteins Regulate Distinct Polar Nuclear-Membrane Fusion Events in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 1937-1944.	3.1	22
43	NMR analyses on the interactions of the yeast Tim50 Câ€terminal region with the presequence and Tim50 core domain. FEBS Letters, 2014, 588, 678-684.	2.8	20
44	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	27.8	1,185
45	Multiple BiP Genes of Arabidopsis thaliana are Required for Male Gametogenesis and Pollen Competitiveness. Plant and Cell Physiology, 2014, 55, 801-810.	3.1	58
46	Phospholipid Transport via Mitochondria. Traffic, 2014, 15, 933-945.	2.7	62
47	A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Reports, 2014, 15, 670-7.	4.5	44
48	Tam41 Is a CDP-Diacylglycerol Synthase Required for Cardiolipin Biosynthesis in Mitochondria. Cell Metabolism, 2013, 17, 709-718.	16.2	135
49	Analyses of Protein–Protein Interactions by In Vivo Photocrosslinking in Budding Yeast. Methods in Molecular Biology, 2013, 1033, 207-217.	0.9	13
50	Roles of Dom34:Hbs1 in Nonstop Protein Clearance from Translocators for Normal Organelle Protein Influx. Cell Reports, 2012, 2, 447-453.	6.4	54
51	Structural insight into the mitochondrial protein import system. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 955-970.	2.6	120
52	BamE structure: the assembly of $\hat{l}^2 \hat{a} \in barrel$ proteins in the outer membranes of bacteria and mitochondria. EMBO Reports, 2011, 12, 94-95.	4.5	13
53	In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15179-15183.	7.1	107
54	Transport of proteins across or into the mitochondrial outer membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 706-714.	4.1	101

#	Article	IF	Citations
55	Tom7 Regulates Mdm10-mediated Assembly of the Mitochondrial Import Channel Protein Tom40. Journal of Biological Chemistry, 2010, 285, 41222-41231.	3.4	86
56	BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1684-1689.	7.1	101
57	Mitochondrial Matrix Reloaded with RNA. Cell, 2010, 142, 362-363.	28.9	5
58	Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Reports, 2010, 11, 187-193.	4.5	86
59	Structural Basis for the Disulfide Relay System in the Mitochondrial Intermembrane Space. Antioxidants and Redox Signaling, 2010, 13, 1359-1373.	5.4	45
60	Tim23–Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. Journal of Cell Biology, 2009, 184, 129-141.	5.2	125
61	Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. Journal of Cell Biology, 2009, 185, 1029-1045.	5. 2	149
62	Multiple pathways for mitochondrial protein traffic. Biological Chemistry, 2009, 390, 723-730.	2.5	163
63	2SA2-01 Mitochondrial translocators that mediate sorting of 1000 different mitochondrial proteins(2SA2 Research frontiers of protein transport across the membrane,The 47th Annual Meeting) Tj ETQq1	1 0.7 8431	.4ogBT/Ove
64	2P-133 Step-size analyses of the mitochondrial Hsp70 import motor reveal the Brownian ratchet in operation(Molecular motor,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S127.	0.1	0
65	3P-030 Structural analysis of mitochondrial thiol oxidase Tim40(Protein:Structure & Function,The) Tj ETQq1 1 0.7	784314 rg 0.1	BT/Overlock
66	Identification and characterization of a Jem1p ortholog of <i>Candida albicans</i> : dissection of Jem1p functions in karyogamy and protein quality control in <i> Saccharomyces cerevisiae</i> . Genes To Cells, 2008, 13, 1015-1026.	1,2	9
67	Arabidopsis thaliana Has a Set of J Proteins in the Endoplasmic Reticulum that are Conserved from Yeast to Animals and Plants. Plant and Cell Physiology, 2008, 49, 1547-1562.	3.1	73
68	Step-size Analyses of the Mitochondrial Hsp70 Import Motor Reveal the Brownian Ratchet in Operation. Journal of Biological Chemistry, 2008, 283, 27325-27332.	3.4	34
69	Tom20 and Tom22 Share the Common Signal Recognition Pathway in Mitochondrial Protein Import. Journal of Biological Chemistry, 2008, 283, 3799-3807.	3.4	123
70	Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. Journal of Cell Biology, 2006, 174, 631-637.	5.2	90
71	Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17999-18004.	7.1	60
72	Two novel proteins in the mitochondrial outer membrane mediate \hat{l}^2 -barrel protein assembly. Journal of Cell Biology, 2004, 166, 621-627.	5.2	143

#	Article	IF	CITATIONS
73	Identification of Tim40 That Mediates Protein Sorting to the Mitochondrial Intermembrane Space. Journal of Biological Chemistry, 2004, 279, 47815-47821.	3.4	188
74	Reinvestigation of the Requirement of Cytosolic ATP for Mitochondrial Protein Import. Journal of Biological Chemistry, 2004, 279, 19464-19470.	3.4	19
75	Mitochondrial Protein Import. Journal of Biological Chemistry, 2004, 279, 45701-45707.	3.4	54
76	Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. Journal of Cell Science, 2003, 116, 3259-3267.	2.0	162
77	Tim50 Is a Subunit of the TIM23 Complex that Links Protein Translocation across the Outer and Inner Mitochondrial Membranes. Cell, 2002, 111, 519-528.	28.9	233
78	Functions of outer membrane receptors in mitochondrial protein import. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 3-14.	4.1	117
79	Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20. Cell, 2000, 100, 551-560.	28.9	493
80	Binding of Mitochondrial Presequences to Yeast Cytosolic Heat Shock Protein 70 Depends on the Amphiphilicity of the Presequence. Journal of Biological Chemistry, 1996, 271, 4161-4167.	3.4	44
81	Identification of yeastMAS17encoding the functional counterpart of the mitochondrial receptor complex protein MOM22 ofNeurospora crassa. FEBS Letters, 1995, 357, 202-206.	2.8	51
82	Mitochondrial presequences can induce aggregation of unfolded proteins. FEBS Letters, 1995, 359, 93-96.	2.8	17
83	Isolation and characterization of the cDNA for pea chloroplast SecA Evolutionary conservation of the bacterial-type SecA-dependent protein transport within chloroplasts. FEBS Letters, 1995, 364, 305-308.	2.8	41
84	Chloroplast Protein Import. Chloroplast Envelopes and Thylakoids have Different Abilities to Unfold Proteins. FEBS Journal, 1994, 225, 403-409.	0.2	31
85	The chloroplast-targeting domain of plastocyanin transit peptide can form a helical structure but does not have a high affinity for lipid bilayers. FEBS Journal, 1992, 207, 671-675.	0.2	33
86	Co-operative binding of hsp60 may promote transfer hsp70 and correct folding of imported proteins in mitochondria. FEBS Letters, 1991, 293, 1-3.	2.8	14
87	Mechanisms of Mitochondrial Protein Translocation across Membranes Seibutsu Butsuri, 1991, 31, 127-132.	0.1	0