
Liping Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699478/publications.pdf Version: 2024-02-01

LIDING WEN

#	Article	IF	CITATIONS
1	Electrokinetic transport of nanoparticles in functional group modified nanopores. Chinese Chemical Letters, 2023, 34, 107667.	9.0	4
2	Ionic Crosslinkingâ€Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Advanced Materials, 2022, 34, e2108410.	21.0	25
3	The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy, 2022, 92, 106709.	16.0	14
4	Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nature Sustainability, 2022, 5, 71-80.	23.7	112
5	Programmed Death of Injured <i>Pseudomonas aeruginosa</i> on Mechano-Bactericidal Surfaces. Nano Letters, 2022, 22, 1129-1137.	9.1	23
6	Electrochemical ion-pumping-assisted transfer system featuring a heterogeneous membrane for lithium recovery. Chemical Engineering Journal, 2022, 435, 134955.	12.7	12
7	Polymer-based membranes for promoting osmotic energy conversion. Giant, 2022, 10, 100094.	5.1	21
8	Covalent organic frameworks embedded in polystyrene membranes for ion sieving. Chemical Communications, 2022, 58, 5403-5406.	4.1	12
9	Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. Small Methods, 2022, 6, e2101255.	8.6	18
10	Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion. ACS Applied Materials & Interfaces, 2022, 14, 13223-13230.	8.0	31
11	Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 2022, 13, 1701.	12.8	46
12	Bioinspired poly (ionic liquid) membrane for efficient salinity gradient energy harvesting: Electrostatic crosslinking induced hierarchical nanoporous network. Nano Energy, 2022, 97, 107170.	16.0	18
13	The interaction between silica flat substrate and functional group–modified nanoparticles. Electrophoresis, 2022, 43, 1984-1992.	2.4	2
14	Wetting-Induced Water Promoted Flow on Tunable Liquid–Liquid Interface-Based Nanopore Membrane System. ACS Nano, 2022, 16, 11092-11101.	14.6	7
15	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	13.7	94
16	Cement-and-pebble nanofluidic membranes with stable acid resistance as osmotic energy generators. Science China Materials, 2022, 65, 2729-2736.	6.3	2
17	Tailoring Sulfonated Poly(phenyl-alkane)s of Intrinsic Microporosity Membrane for Advanced Osmotic Energy Conversion. , 2022, 4, 1422-1429.		11
18	Ion transport regulation through triblock copolymer/PET asymmetric nanochannel membrane: Model system establishment and rectification mapping. Chinese Chemical Letters, 2021, 32, 822-825.	9.0	29

#	Article	IF	CITATIONS
19	Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy, 2021, 79, 105509.	16.0	42
20	A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction. Nano Research, 2021, 14, 1421-1428.	10.4	16
21	Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy, 2021, 81, 105657.	16.0	47
22	Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation. ACS Applied Polymer Materials, 2021, 3, 485-493.	4.4	14
23	Metallic Two-Dimensional MoS ₂ Composites as High-Performance Osmotic Energy Conversion Membranes. Journal of the American Chemical Society, 2021, 143, 1932-1940.	13.7	133
24	Ultraâ€Sensitive and Selective Electrochemical Bioâ€Fluid Biopsy for Oral Cancer Screening. Small Methods, 2021, 5, e2001205.	8.6	4
25	Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 8782-8793.	8.0	44
26	Nacre-like Mechanically Robust Heterojunction for Lithium-Ion Extraction. Matter, 2021, 4, 737-754.	10.0	69
27	Free‣tanding Covalent Organic Framework Membrane for Highâ€Efficiency Salinity Gradient Energy Conversion. Angewandte Chemie, 2021, 133, 10013-10018.	2.0	28
28	Interfacial Superâ€Assembly of Tâ€Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. Small, 2021, 17, e2100141.	10.0	30
29	Free‣tanding Covalent Organic Framework Membrane for Highâ€Efficiency Salinity Gradient Energy Conversion. Angewandte Chemie - International Edition, 2021, 60, 9925-9930.	13.8	94
30	Nanofluidics for osmotic energy conversion. Nature Reviews Materials, 2021, 6, 622-639.	48.7	288
31	Light-Induced Heat Driving Active Ion Transport Based on 2D MXene Nanofluids for Enhancing Osmotic Energy Conversion. CCS Chemistry, 2021, 3, 1325-1335.	7.8	48
32	Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Science Advances, 2021, 7, .	10.3	81
33	Inside Front Cover: Ultraâ€Sensitive and Selective Electrochemical Bioâ€Fluid Biopsy for Oral Cancer Screening (Small Methods 5/2021). Small Methods, 2021, 5, 2170018.	8.6	0
34	Surface Charge Regulated Asymmetric Ion Transport in Nanoconfined Space. Small, 2021, 17, e2101099.	10.0	31
35	Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether) Tj ETQq1	1 0.78431 7.9	4 rgBT /Over
36	Large-Scale, Ultrastrong Cu ²⁺ Cross-Linked Sodium Alginate Membrane for Effective	4.4	14

Salinity Gradient Power Conversion. ACS Applied Polymer Materials, 2021, 3, 3902-3910.

4.4 14

#	Article	IF	CITATIONS
37	Heterogeneous MXene/PSâ€bâ€P2VP Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion. Advanced Functional Materials, 2021, 31, 2105013.	14.9	62
38	Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. ACS Central Science, 2021, 7, 1486-1492.	11.3	48
39	Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores. Electrophoresis, 2021, 42, 2197-2205.	2.4	3
40	Synergy of light and acid–base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy and Environmental Science, 2021, 14, 4400-4409.	30.8	53
41	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€5ilica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pHâ€5ensitive Smart Ion Transport. Angewandte Chemie - International Édition, 2021, 60, 26167-26176.	13.8	58
42	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature†and pHâ€Sensitive Smart Ion Transport. Angewandte Chemie, 2021, 133, 26371-26380.	2.0	12
43	Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power. Accounts of Chemical Research, 2021, 54, 4154-4165.	15.6	66
44	Tunable molecular transport and sieving enabled by covalent organic framework with programmable surface charge. Materials Today, 2021, 51, 56-64.	14.2	19
45	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie, 2020, 132, 1676-1682.	2.0	12
46	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 1659-1665.	13.8	268
47	Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Letters, 2020, 5, 742-748.	17.4	98
48	Specific Recognition of Uranyl Ion Employing a Functionalized Nanochannel Platform for Dealing with Radioactive Contamination. ACS Applied Materials & amp; Interfaces, 2020, 12, 3854-3861.	8.0	24
49	Sulfur covalently bonded to porous graphitic carbon as an anode material for lithium-ion capacitors with high energy storage performance. Journal of Materials Chemistry A, 2020, 8, 62-68.	10.3	31
50	Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Singleâ€Pore to Multichannel Membranes. Advanced Materials, 2020, 32, e1904351.	21.0	95
51	Improved Ion Transport in Hydrogel-Based Nanofluidics for Osmotic Energy Conversion. ACS Central Science, 2020, 6, 2097-2104.	11.3	49
52	Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano, 2020, 14, 9701-9710.	14.6	124
53	Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Nano Letters, 2020, 20, 5705-5713.	9.1	71
54	pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion. Nanoscale Advances, 2020, 2, 4070-4076.	4.6	6

#	Article	IF	CITATIONS
55	Electrokinetic Translocation of a Deformable Nanoparticle through a Nanopore. ACS Applied Bio Materials, 2020, 3, 5160-5168.	4.6	4
56	Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Materials Horizons, 2020, 7, 2702-2709.	12.2	118
57	The polarization reverse of diode-like conical nanopore under pH gradient. SN Applied Sciences, 2020, 2, 1.	2.9	2
58	Tailoring A Poly(ether sulfone) Bipolar Membrane: Osmoticâ€Energy Generator with High Power Density. Angewandte Chemie - International Edition, 2020, 59, 17423-17428.	13.8	47
59	Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation. Chemical Communications, 2020, 56, 8123-8126.	4.1	16
60	Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Nano Letters, 2020, 20, 3593-3601.	9.1	76
61	Tailoring A Poly(ether sulfone) Bipolar Membrane: Osmoticâ€Energy Generator with High Power Density. Angewandte Chemie, 2020, 132, 17576-17581.	2.0	11
62	Bioinspired nervous signal transmission system based on two-dimensional laminar nanofluidics: From electronics to ionics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16743-16748.	7.1	22
63	Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nature Communications, 2020, 11, 875.	12.8	179
64	Smart Nanofluidic Systems: Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Singleâ€Pore to Multichannel Membranes (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070026.	21.0	0
65	Towards Practical Osmotic Energy Capture by a Layer-by-Layer Membrane. Trends in Chemistry, 2020, 2, 180-182.	8.5	16
66	Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. National Science Review, 2020, 7, 1349-1359.	9.5	65
67	Brush Layer Charge Characteristics of a Biomimetic Polyelectrolyte-Modified Nanoparticle Surface. Langmuir, 2020, 36, 15220-15229.	3.5	4
68	Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range. ACS Applied Materials & Interfaces, 2019, 11, 23815-23821.	8.0	79
69	Photoâ€Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. Angewandte Chemie - International Edition, 2019, 58, 12574-12579.	13.8	75
70	Photoâ€Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. Angewandte Chemie, 2019, 131, 12704-12709.	2.0	8
71	High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nature Communications, 2019, 10, 3876.	12.8	252
72	Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy, 2019, 59, 354-362.	16.0	71

#	Article	IF	CITATIONS
73	Engineered Smart Gating Nanochannels for High Performance in Formaldehyde Detection and Removal. Advanced Functional Materials, 2019, 29, 1807953.	14.9	53
74	Artificial light-driven ion pump for photoelectric energy conversion. Nature Communications, 2019, 10, 74.	12.8	167
75	A Pb ²⁺ ionic gate with enhanced stability and improved sensitivity based on a 4′-aminobenzo-18-crown-6 modified funnel-shaped nanochannel. Faraday Discussions, 2018, 210, 101-111.	3.2	23
76	Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution. Journal of the American Chemical Society, 2018, 140, 1083-1090.	13.7	87
77	Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews, 2018, 47, 322-356.	38.1	372
78	Quantum-confined superfluid: From nature to artificial. Science China Materials, 2018, 61, 1027-1032.	6.3	73
79	Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport. Journal of the American Chemical Society, 2018, 140, 4552-4559.	13.7	99
80	A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification. Nanoscale, 2018, 10, 6850-6854.	5.6	25
81	Biomimetic Peptideâ€Gated Nanoporous Membrane for Onâ€Đemand Molecule Transport. Angewandte Chemie, 2018, 130, 157-161.	2.0	12
82	Biomimetic Peptideâ€Gated Nanoporous Membrane for Onâ€Đemand Molecule Transport. Angewandte Chemie - International Edition, 2018, 57, 151-155.	13.8	41
83	Bacteriorhodopsinâ€Inspired Lightâ€Driven Artificial Molecule Motors for Transmembrane Mass Transportation. Angewandte Chemie, 2018, 130, 16950-16954.	2.0	6
84	Bacteriorhodopsinâ€Inspired Lightâ€Driven Artificial Molecule Motors for Transmembrane Mass Transportation. Angewandte Chemie - International Edition, 2018, 57, 16708-16712.	13.8	40
85	Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. Journal of the American Chemical Society, 2018, 140, 16048-16052.	13.7	76
86	A universal tunable nanofluidic diode via photoresponsive host–guest interactions. NPG Asia Materials, 2018, 10, 849-857.	7.9	30
87	Skinâ€Inspired Lowâ€Grade Heat Energy Harvesting Using Directed Ionic Flow through Conical Nanochannels. Advanced Energy Materials, 2018, 8, 1800459.	19.5	47
88	Bioinspired Ionic Diodes: From Unipolar to Bipolar. Advanced Functional Materials, 2018, 28, 1801079.	14.9	82
89	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Freeâ€Standing Polymeric Carbon Nitride Membranes. Angewandte Chemie - International Edition, 2018, 57, 10123-10126.	13.8	197
90	Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity. Computer Methods in Applied Mechanics and Engineering, 2018, 341, 113-132.	6.6	22

#	Article	IF	CITATIONS
91	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Freeâ€Standing Polymeric Carbon Nitride Membranes. Angewandte Chemie, 2018, 130, 10280-10283.	2.0	34
92	Engineered Artificial Nanochannels for Nitrite Ion Harmless Conversion. ACS Applied Materials & Interfaces, 2018, 10, 30852-30859.	8.0	17
93	High-Sensitivity Detection of Iron(III) by Dopamine-Modified Funnel-Shaped Nanochannels. ACS Applied Materials & Interfaces, 2018, 10, 22632-22639.	8.0	67
94	Sequential Recognition of Zinc and Pyrophosphate lons in a Terpyridineâ€Functionalized Single Nanochannel. ChemPhysChem, 2017, 18, 253-259.	2.1	15
95	A Tunable Ionic Diode Based on a Biomimetic Structureâ€Tailorable Nanochannel. Angewandte Chemie - International Edition, 2017, 56, 8168-8172.	13.8	72
96	A Tunable Ionic Diode Based on a Biomimetic Structureâ€Tailorable Nanochannel. Angewandte Chemie, 2017, 129, 8280-8284.	2.0	7
97	Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. Journal of the American Chemical Society, 2017, 139, 8905-8914.	13.7	304
98	Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes. Nano Research, 2017, 10, 3715-3725.	10.4	39
99	Biomimetic Voltage-Gated Ultrasensitive Potassium-Activated Nanofluidic Based on a Solid-State Nanochannel. Langmuir, 2017, 33, 8463-8467.	3.5	25
100	An Artificial CO ₂ â€Ðriven Ionic Gate Inspired by Olfactory Sensory Neurons in Mosquitoes. Advanced Materials, 2017, 29, 1603884.	21.0	61
101	Engineered Asymmetric Composite Membranes with Rectifying Properties. Advanced Materials, 2016, 28, 757-763.	21.0	31
102	Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. Small, 2016, 12, 2810-2831.	10.0	150
103	Adenosineâ€Activated Nanochannels Inspired by Gâ€Proteinâ€Coupled Receptors. Small, 2016, 12, 1854-1858.	10.0	26
104	A Biomimetic Voltageâ€Gated Chloride Nanochannel. Advanced Materials, 2016, 28, 3181-3186.	21.0	77
105	Enhanced Stability and Controllability of an Ionic Diode Based on Funnelâ€6haped Nanochannels with an Extended Critical Region. Advanced Materials, 2016, 28, 3345-3350.	21.0	109
106	Lightâ€Controlled Ion Transport through Biomimetic DNAâ€Based Channels. Angewandte Chemie, 2016, 128, 15866-15870.	2.0	20
107	Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures. Nanoscale, 2016, 8, 12318-12323.	5.6	35
108	Fabrication and ionic transportation characterization of funnel-shaped nanochannels. RSC Advances, 2016, 6, 55064-55070.	3.6	17

#	Article	IF	CITATIONS
109	A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. Advanced Materials, 2016, 28, 144-150.	21.0	179
110	Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. Angewandte Chemie, 2016, 128, 13250-13254.	2.0	6
111	Electrostatic-Charge- and Electric-Field-Induced Smart Gating for Water Transportation. ACS Nano, 2016, 10, 9703-9709.	14.6	63
112	Asymmetric Multifunctional Heterogeneous Membranes for pH―and Temperatureâ€Cooperative Smart Ion Transport Modulation. Advanced Materials, 2016, 28, 9613-9619.	21.0	83
113	Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. Angewandte Chemie - International Edition, 2016, 55, 13056-13060.	13.8	50
114	Lightâ€Controlled Ion Transport through Biomimetic DNAâ€Based Channels. Angewandte Chemie - International Edition, 2016, 55, 15637-15641.	13.8	104
115	"Uphill―cation transport: A bioinspired photo-driven ion pump. Science Advances, 2016, 2, e1600689.	10.3	71
116	Biomimetic smart nanochannels for power harvesting. Nano Research, 2016, 9, 59-71.	10.4	46
117	Colloidal Synthesis of Lettuce-like Copper Sulfide for Light-Gating Heterogeneous Nanochannels. ACS Nano, 2016, 10, 3606-3613.	14.6	33
118	Construction and application of photoresponsive smart nanochannels. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 26, 31-47.	11.6	52
119	A Bioinspired Switchable and Tunable Carbonateâ€Activated Nanofluidic Diode Based on a Single Nanochannel. Angewandte Chemie - International Edition, 2015, 54, 13664-13668.	13.8	85
120	Fabrication of Nanochannels. Materials, 2015, 8, 6277-6308.	2.9	24
121	Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics. Physical Chemistry Chemical Physics, 2015, 17, 6367-6373.	2.8	15
122	Bioinspired Superâ€Wettability from Fundamental Research to Practical Applications. Angewandte Chemie - International Edition, 2015, 54, 3387-3399.	13.8	611
123	Chiral recognition of <scp>l</scp> -tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chemical Communications, 2015, 51, 3135-3138.	4.1	108
124	DNAzyme tunable lead(<scp>ii</scp>) gating based on ion-track etched conical nanochannels. Chemical Communications, 2015, 51, 5979-5981.	4.1	50
125	Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. Journal of the American Chemical Society, 2015, 137, 14765-14772.	13.7	299
126	Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society, 2015, 137, 11976-11983.	13.7	184

#	Article	IF	CITATIONS
127	Microcontactâ€Printingâ€Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application. Advanced Materials, 2015, 27, 712-718.	21.0	177
128	A Bioâ€inspired, Sensitive, and Selective Ionic Gate Driven by Silver (I) Ions. Small, 2015, 11, 543-547.	10.0	58
129	A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano, 2014, 8, 12292-12299.	14.6	95
130	A new porphyrin sensitizer with phenolic binding group for high efficiency dye-sensitized solar cells. Materials Science-Poland, 2014, 32, 610-616.	1.0	1
131	Construction of biomimetic smart nanochannels for confined water. National Science Review, 2014, 1, 144-156.	9.5	58
132	Ultratrace detection of glucose with enzyme-functionalized single nanochannels. Journal of Materials Chemistry A, 2014, 2, 19131-19135.	10.3	52
133	A Biomimetic Multiâ€Stimuliâ€Response Ionic Gate Using a Hydroxypyrene Derivationâ€Functionalized Asymmetric Single Nanochannel. Advanced Materials, 2014, 26, 6560-6565.	21.0	76
134	Highly sensitive, selective and reusable mercury(ii) ion sensor based on a ssDNA-functionalized photonic crystal film. Physical Chemistry Chemical Physics, 2013, 15, 11943.	2.8	43
135	A biomimetic mercury(ii)-gated single nanochannel. Chemical Communications, 2013, 49, 10679.	4.1	86
136	Aligned silicon nanowires with fineâ€ŧunable tilting angles by metalâ€assisted chemical etching on offâ€cut wafers. Physica Status Solidi - Rapid Research Letters, 2013, 7, 655-658.	2.4	6
137	Conversion of Light to Electricity by Photoinduced Reversible pH Changes and Biomimetic Nanofluidic Channels. Advanced Functional Materials, 2013, 23, 2887-2893.	14.9	37
138	Malachite Green Derivative–Functionalized Single Nanochannel: Lightâ€andâ€pH Dualâ€Driven Ionic Gating. Advanced Materials, 2012, 24, 6193-6198.	21.0	75
139	Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Physical Chemistry Chemical Physics, 2012, 14, 4027.	2.8	53
140	Malachite Green Derivative–Functionalized Single Nanochannel: Lightâ€andâ€pH Dualâ€Driven Ionic Gating (Adv. Mater. 46/2012). Advanced Materials, 2012, 24, 6192-6192.	21.0	0
141	A Photoâ€induced, and Chemicalâ€Driven, Smartâ€Gating Nanochannel. Small, 2012, 8, 838-842.	10.0	47
142	Bioinspired Ionâ€Transport Properties of Solidâ€State Single Nanochannels and Their Applications in Sensing. ChemPhysChem, 2012, 13, 2455-2470.	2.1	69
143	Bio-inspired smart gating nanochannels based on polymer films. Science China Chemistry, 2011, 54, 1537-1546.	8.2	13
144	Bioâ€inspired Photoelectric Conversion Based on Smartâ€Gating Nanochannels. Advanced Functional Materials, 2010, 20, 2636-2642.	14.9	113

#	Article	IF	CITATIONS
145	Bioinspired Smart Gating of Nanochannels Toward Photoelectricâ€Conversion Systems. Advanced Materials, 2010, 22, 1021-1024.	21.0	104
146	Photoelectric conversion behavior based on direct interfacial charge-transfer from porphyrin derivative to silicon nanowires. Applied Physics Letters, 2010, 97, 253111.	3.3	11
147	A biomimetic zinc activated ion channel. Chemical Communications, 2010, 46, 1682.	4.1	138
148	Controllable Growth of 0D to Multidimensional Nanostructures of a Novel Porphyrin Molecule. Advanced Materials, 2009, 21, 1721-1725.	21.0	72
149	Bio-inspired multi-scale structures in dye-sensitized solar cell. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 149-158.	11.6	28
150	Asymmetric and Symmetric Dipoleâ^'Dipole Interactions Drive Distinct Aggregation and Emission Behavior of Intramolecular Charge-Transfer Molecules. Journal of Physical Chemistry C, 2009, 113, 5924-5932.	3.1	68
151	A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 2009, 131, 7800-7805.	13.7	316