Javad Mohammadpour Velni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699133/publications.pdf

Version: 2024-02-01

44 papers

462 citations

759233 12 h-index 19 g-index

44 all docs

44 docs citations

times ranked

44

433 citing authors

#	Article	IF	CITATIONS
1	Safe control of nonlinear systems in LPV framework using model-based reinforcement learning. International Journal of Control, 2023, 96, 1079-1090.	1.9	5
2	Heterogeneity-Aware Graph Partitioning for Distributed Deployment of Multiagent Systems. IEEE Transactions on Cybernetics, 2022, 52, 2578-2588.	9.5	2
3	Attack-Resilient Lateral Stability Control for Four-Wheel-Driven EVs Considering Changed Driver Behavior Under Cyber Threats. IEEE Transactions on Transportation Electrification, 2022, 8, 1362-1375.	7.8	8
4	Finite State Markov Modeling of C-V2X Erasure Links For Performance and Stability Analysis of Platooning Applications., 2022,,.		5
5	Epistemic Uncertainty Quantification in State-Space LPV Model Identification Using Bayesian Neural Networks. , 2021, 5, 719-724.		16
6	A reinforcement learningâ€based approach for modeling and coverage of an unknown field using a team of autonomous ground vehicles. International Journal of Intelligent Systems, 2021, 36, 1069-1084.	5.7	20
7	A Graph Theoretic-Based Approach for Deploying Heterogeneous Multi-agent Systems with Application in Precision Agriculture. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	3.4	9
8	A weighted graphâ€based method for detection of data integrity attacks in electricity markets. IET Generation, Transmission and Distribution, 2021, 15, 2298-2308.	2.5	0
9	Data-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing. Control Engineering Practice, 2021, 109, 104725.	5. 5	16
10	Data-driven Linear Parameter-varying Model Identification Using Transfer Learning. , 2021, , .		0
11	Attack-Resilient Lateral Stability Control for Autonomous In-Wheel-Motor-Driven Electric Vehicles., 2021,,.		4
12	Energy Management Strategy for Dual-Motor-Based Electric Vehicle Powertrain Using Nonlinear Model Predictive Control., 2021,,.		1
13	Optimal lighting control in greenhouse by incorporating sunlight prediction. Computers and Electronics in Agriculture, 2021, 188, 106300.	7.7	15
14	Data-Driven Linear Parameter-Varying Model Identification Using Transfer Learning. , 2021, 5, 1579-1584.		5
15	LPV modeling of nonlinear systems: A multiâ€path feedback linearization approach. International Journal of Robust and Nonlinear Control, 2021, 31, 9436-9465.	3.7	4
16	Physics-guided and Neural Network Learning-based Sliding Mode Control. IFAC-PapersOnLine, 2021, 54, 705-710.	0.9	2
17	Input-output Data-driven Modeling and MIMO Predictive Control of an RCCI Engine Combustion. IFAC-PapersOnLine, 2021, 54, 406-411.	0.9	6
18	Multi-Agent Systems Coverage Control in Mixed-Dimensional and Hybrid Environments. IFAC-PapersOnLine, 2021, 54, 765-770.	0.9	2

#	Article	IF	Citations
19	Model-free Control Design Using Policy Gradient Reinforcement Learning in LPV Framework. , 2021, , .		2
20	Development and Implementation of an IoT-Enabled Optimal and Predictive Lighting Control Strategy in Greenhouses. Plants, 2021, 10, 2652.	3.5	9
21	Data-driven Modeling and Predictive Control of Maximum Pressure Rise Rate in RCCI Engines. , 2020, , .		11
22	Real-Time Plant Leaf Counting Using Deep Object Detection Networks. Sensors, 2020, 20, 6896.	3.8	46
23	Energy Management of Islanded Nanogrids Through Nonlinear Optimization Using Stochastic Dynamic Programming. IEEE Transactions on Industry Applications, 2020, 56, 2129-2137.	4.9	27
24	A New Voronoi-Based Blanket Coverage Control Method for Moving Sensor Networks. IEEE Transactions on Control Systems Technology, 2019, 27, 409-417.	5.2	40
25	A Fixed-Switching-Frequency Sliding Mode Current Controller for Mutually Coupled Switched Reluctance Machines Using Asymmetric Bridge Converter. , 2019, , .		6
26	Non-linear Droop Control of Parallel Split-phase Inverters for Residential Nanogrids. , 2019, , .		9
27	A team-based deployment approach for heterogeneous mobile sensor networks. Automatica, 2019, 106, 327-338.	5.0	7
28	A photochemistry-based method for optimising greenhouse supplemental light intensity. Biosystems Engineering, 2019, 182, 123-137.	4.3	23
29	Optimum Energy Management of Islanded Nanogrids through Nonlinear Stochastic Dynamic Programming. , 2019, , .		3
30	Sliding Mode Current Control of Mutually Coupled Switched Reluctance Machines using a Three-phase Voltage Source Converter. , 2019, , .		3
31	Agricultural Field Coverage Using Cooperating Unmanned Ground Vehicles. , 2019, , .		2
32	Vector control optimization of DFIGs under unbalanced conditions. International Transactions on Electrical Energy Systems, 2018, 28, e2583.	1.9	7
33	Linear Parameter-varying Approach for Modeling and Control of Rapid Thermal Processes. International Journal of Control, Automation and Systems, 2018, 16, 207-216.	2.7	5
34	State-space LPV model identification using kernelized machine learning. Automatica, 2018, 88, 38-47.	5.0	42
35	Robust nonâ€inear control design for systems governed by Burgers' equation subjected to parameter variation. IET Control Theory and Applications, 2018, 12, 582-592.	2.1	1
36	Design of robust profitable false data injection attacks in multiâ€settlement electricity markets. IET Generation, Transmission and Distribution, 2018, 12, 1263-1270.	2.5	25

#	Article	lF	CITATIONS
37	An LMI-based approach to distributed model predictive control design for spatially-interconnected systems. Automatica, 2018, 95, 481-487.	5.0	18
38	Coverage Control with Multiple Ground Robots for Precision Agriculture. Mechanical Engineering, 2018, 140, S4-S8.	0.1	17
39	Team-based Coverage Control of Moving Sensor Networks with Uncertain Measurements. , 2018, , .		1
40	Model Reduction in Linear Parameter-Varying Models using Autoencoder Neural Networks. , 2018, , .		4
41	A team-based approach for coverage control of moving sensor networks. Automatica, 2017, 81, 342-349.	5.0	9
42	Distributed observerâ€based cooperative control for output regulation in multiâ€agent linear parameterâ€varying systems. IET Control Theory and Applications, 2017, 11, 1394-1403.	2.1	15
43	Coverage control of moving sensor networks with multiple regions of interest., 2017,,.		8
44	Cooperative Output Regulation of Multiagent Linear Parameter-Varying Systems. Mathematical Problems in Engineering, 2017, 2017, 1-10.	1.1	2