Andre Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699083/publications.pdf

Version: 2024-02-01

71102 58581 8,978 83 41 82 citations h-index g-index papers 93 93 93 12858 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cellular Prion Protein Mediates αâ€Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Movement Disorders, 2022, 37, 39-51.	3.9	13
2	Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuronâ€enriched genes. EMBO Journal, 2022, 41, e106459.	7.8	7
3	In Vivo Vasospasm Induction by Ultrasound Application in the Chicken Chorioallantoic Membrane Model. Translational Stroke Research, 2022, , 1.	4.2	O
4	Ultrasound-Induced Release of Nimodipine from Drug-Loaded Block Copolymer Micelles: In Vivo Analysis. Translational Stroke Research, 2022, , $1\cdot$	4.2	3
5	Multiâ€omic landscaping of human midbrains identifies diseaseâ€relevant molecular targets and pathways in advancedâ€stage Parkinson's disease. Clinical and Translational Medicine, 2022, 12, e692.	4.0	22
6	Aging-Associated Changes in Cognition, Expression and Epigenetic Regulation of Chondroitin 6-Sulfotransferase Chst3. Cells, 2022, 11, 2033.	4.1	4
7	The Coding and Small Non-coding Hippocampal Synaptic RNAome. Molecular Neurobiology, 2021, 58, 2940-2953.	4.0	10
8	MicroRNAs as Candidate Biomarkers for Alzheimer's Disease. Non-coding RNA, 2021, 7, 8.	2.6	10
9	Intranuclear immunostaining-based FACS protocol from embryonic cortical tissue. STAR Protocols, 2021, 2, 100318.	1.2	10
10	Molecular Profiling Reveals Involvement of ESCO2 in Intermediate Progenitor Cell Maintenance in the Developing Mouse Cortex. Stem Cell Reports, 2021, 16, 968-984.	4.8	5
11	MicroRNAs from extracellular vesicles as a signature for Parkinson's disease. Clinical and Translational Medicine, 2021, 11, e357.	4.0	14
12	H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion. Science Advances, 2021, 7, eabc6792.	10.3	16
13	Epigenetic gene expression links heart failure to memory impairment. EMBO Molecular Medicine, 2021, 13, e11900.	6.9	15
14	Exercise as a model to identify microRNAs linked to human cognition: a role for microRNA-409 and microRNA-501. Translational Psychiatry, 2021, 11, 514.	4.8	10
15	A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Molecular Medicine, 2021, 13, e13659.	6.9	29
16	SATB2â€LEMD2 interaction links nuclear shape plasticity to regulation of cognitionâ€related genes. EMBO Journal, 2021, 40, e103701.	7.8	14
17	Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nature Communications, 2021, 12, 6530.	12.8	16
18	Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. European Journal of Heart Failure, 2020, 22, 54-66.	7.1	193

#	Article	IF	CITATIONS
19	Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nature Communications, 2020, $11,3791$.	12.8	77
20	Choroid plexusâ€derived miRâ€204 regulates the number of quiescent neural stem cells in the adult brain. EMBO Journal, 2019, 38, e100481.	7.8	52
21	A 2A Râ€induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 2019, 67, 2329-2342.	4.9	28
22	A combined miRNA–piRNA signature to detect Alzheimer's disease. Translational Psychiatry, 2019, 9, 250.	4.8	74
23	TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Scientific Reports, 2019, 9, 16173.	3.3	16
24	The Role of Dynamic Histone Modifications in Learning Behavior. Current Topics in Behavioral Neurosciences, 2019, 42, 127-157.	1.7	4
25	Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Frontiers in Neuroscience, 2019, 13, 274.	2.8	99
26	Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. Journal of Neuroscience, 2019, 39, 3752-3769.	3.6	46
27	RNA-Dependent Intergenerational Inheritance of Enhanced Synaptic Plasticity after Environmental Enrichment. Cell Reports, 2018, 23, 546-554.	6.4	113
28	Innate immune memory in the brain shapes neurological disease hallmarks. Nature, 2018, 556, 332-338.	27.8	605
29	miR-182-5p and miR-183-5p Act as GDNF Mimics in Dopaminergic Midbrain Neurons. Molecular Therapy - Nucleic Acids, 2018, 11, 9-22.	5.1	34
30	Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nature Communications, 2018, 9, 4230.	12.8	219
31	Defective Mitochondrial Cardiolipin Remodeling Dampens HIF-1α Expression in Hypoxia. Cell Reports, 2018, 25, 561-570.e6.	6.4	42
32	Chromatin Remodeling BAF155 Subunit Regulates the Genesis of Basal Progenitors in Developing Cortex. IScience, 2018, 4, 109-126.	4.1	32
33	Epigenetic Regulation by BAF Complexes Limits Neural Stem Cell Proliferation by Suppressing Wnt Signaling in Late Embryonic Development. Stem Cell Reports, 2018, 10, 1734-1750.	4.8	50
34	Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiology of Disease, 2018, 119, 121-135.	4.4	44
35	Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis. PLoS Pathogens, 2018, 14, e1006802.	4.7	26
36	The diphenylpyrazole compound anle $138b$ blocks $\hat{Al^2}$ channels and rescues disease phenotypes in a mouse model for amyloid pathology. EMBO Molecular Medicine, 2018, 10, 32-47.	6.9	63

#	Article	IF	CITATIONS
37	EndophilinAs regulate endosomal sorting of BDNF-TrkB to mediate survival signaling in hippocampal neurons. Scientific Reports, 2017, 7, 2149.	3.3	29
38	HDAC1 links early life stress to schizophrenia-like phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4686-E4694.	7.1	75
39	Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Human Molecular Genetics, 2017, 26, 2231-2246.	2.9	121
40	KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions. Cell Reports, 2017, 20, 538-548.	6.4	77
41	Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO Journal, 2017, 36, 2815-2828.	7.8	45
42	Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease. Acta Neuropathologica Communications, 2017, 5, 35.	5.2	31
43	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World Journal of Biological Psychiatry, 2017, 18, 330-356.	2.6	33
44	Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. Cell Reports, 2016, 17, 1071-1086.	6.4	100
45	DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nature Neuroscience, 2016, 19, 102-110.	14.8	307
46	Environmental enrichment as a method to improve cognitive function. What can we learn from animal models?. NeuroImage, 2016, 131, 42-47.	4.2	68
47	Satb2 determines miRNA expression and long-term memory in the adult central nervous system. ELife, 2016, 5, .	6.0	68
48	Genetic deletion of the H istone D eacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain and Behavior, 2015, 5, e00361.	2.2	13
49	New friends for Ago2 in neuronal plasticity. EMBO Journal, 2015, 34, 2213-2214.	7.8	2
50	Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Molecular Medicine, 2015, 7, 1565-1579.	6.9	37
51	HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. Journal of Clinical Investigation, 2015, 125, 3572-3584.	8.2	156
52	Loss of BAF (mSWI/SNF) Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development. Cell Reports, 2015, 13, 1842-1854.	6.4	98
53	Inhibition of Histone Deacetylases Permits Lipopolysaccharide-Mediated Secretion of Bioactive IL-1β via a Caspase-1–Independent Mechanism. Journal of Immunology, 2015, 195, 5421-5431.	0.8	36
54	Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome. PLoS ONE, 2014, 9, e115444.	2.5	32

#	Article	IF	CITATIONS
55	De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Frontiers in Cellular Neuroscience, 2014, 8, 373.	3.7	101
56	Histone-acetylation: a link between Alzheimer's disease and post-traumatic stress disorder?. Frontiers in Neuroscience, 2014, 8, 160.	2.8	35
57	Micro <scp>RNA</scp> â€125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. EMBO Journal, 2014, 33, 1667-1680.	7.8	257
58	Epigenetic memory: the Lamarckian brain. EMBO Journal, 2014, 33, 945-967.	7.8	85
59	Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue?. Neuropharmacology, 2014, 80, 95-102.	4.1	98
60	K‣ysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO Journal, 2014, 33, 1912-1927.	7.8	62
61	Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiology of Disease, 2014, 62, 135-143.	4.4	40
62	Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Molecular Medicine, 2013, 5, 52-63.	6.9	270
63	Histone-Methyltransferase MLL2 (KMT2B) Is Required for Memory Formation in Mice. Journal of Neuroscience, 2013, 33, 3452-3464.	3.6	121
64	MicroRNAs as biomarkers for CNS disease. Frontiers in Molecular Neuroscience, 2013, 6, 39.	2.9	195
65	Loss of HDAC5 Impairs Memory Function: Implications for Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, 35-44.	2.6	90
66	HDAC1 Regulates Fear Extinction in Mice. Journal of Neuroscience, 2012, 32, 5062-5073.	3.6	172
67	Sodium Butyrate Improves Memory Function in an Alzheimer's Disease Mouse Model When Administered at an Advanced Stage of Disease Progression. Journal of Alzheimer's Disease, 2011, 26, 187-197.	2.6	313
68	microRNA-34c is a novel target to treat dementias. EMBO Journal, 2011, 30, 4299-4308.	7.8	302
69	The anaphase promoting complex is required for memory function in mice. Learning and Memory, 2010, 18, 49-57.	1.3	42
70	Targeting the correct HDAC(s) to treat cognitive disorders. Trends in Pharmacological Sciences, 2010, 31, 605-617.	8.7	330
71	Altered Histone Acetylation Is Associated with Age-Dependent Memory Impairment in Mice. Science, 2010, 328, 753-756.	12.6	851
72	The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biological Chemistry, 2009, 390, 1145-53.	2.5	88

Andre Fischer

#	Article	IF	Citations
73	Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior. Neurobiology of Learning and Memory, 2007, 87, 149-158.	1.9	98
74	A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nature Neuroscience, 2007, 10, 1012-1019.	14.8	135
75	Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447, 178-182.	27.8	1,120
76	Opposing Roles of Transient and Prolonged Expression of p25 in Synaptic Plasticity and Hippocampus-Dependent Memory. Neuron, 2005, 48, 825-838.	8.1	259
77	Distinct Roles of Hippocampal De Novo Protein Synthesis and Actin Rearrangement in Extinction of Contextual Fear. Journal of Neuroscience, 2004, 24, 1962-1966.	3.6	213
78	Cdk5: A Novel Role in Learning and Memory. NeuroSignals, 2003, 12, 200-208.	0.9	40
79	Regulation of contextual fear conditioning by baseline and inducible septo-hippocampal cyclin-dependent kinase 5. Neuropharmacology, 2003, 44, 1089-1099.	4.1	33
80	Cdk5 in the Adult Non-Demented Brain. CNS and Neurological Disorders, 2003, 2, 375-381.	4.3	14
81	Phosphorylation of Hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during Contextual Fear Conditioning: Interactions between Erk-1/2 and Elk-1. Molecular and Cellular Neurosciences, 2002, 21, 463-476.	2.2	95
82	Cyclin-Dependent Kinase 5 Is Required for Associative Learning. Journal of Neuroscience, 2002, 22, 3700-3707.	3.6	127
83	The role of the fourth extracellular domain of the rat corticotropin-releasing factor receptor type 1 in ligand binding. FEBS Journal, 1999, 259, 55-62.	0.2	36