Robin N Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698805/publications.pdf

Version: 2024-02-01

58 2,930 21 papers citations h-index

83 83 83 3941 all docs docs citations times ranked citing authors

42

g-index

#	Article	IF	CITATIONS
1	Practical considerations for measuring the effective reproductive number, Rt. PLoS Computational Biology, 2020, 16, e1008409.	3.2	343
2	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	9.1	185
3	Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 0, 5, 112.	1.8	176
4	Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infectious Diseases, The, 2022, 22, 603-610.	9.1	154
5	Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. Journal of Clinical Medicine, 2020, 9, 498.	2.4	148
6	Pandemic potential of 2019-nCoV. Lancet Infectious Diseases, The, 2020, 20, 280.	9.1	133
7	Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 0, 5, 112.	1.8	117
8	Key questions for modelling COVID-19 exit strategies. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201405.	2.6	106
9	A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLoS Biology, 2021, 19, e3001128.	5.6	99
10	Epidemiological models are important tools for guiding COVID-19 interventions. BMC Medicine, 2020, 18, 152.	5.5	98
11	Government responses and COVID-19 deaths: Global evidence across multiple pandemic waves. PLoS ONE, 2021, 16, e0253116.	2.5	89
12	Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks. PLoS Computational Biology, 2016, 12, e1004836.	3.2	73
13	High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing. ELife, 2021, 10, .	6.0	63
14	Estimating COVID-19 outbreak risk through air travel. Journal of Travel Medicine, 2020, 27, .	3.0	60
15	SARS-CoV-2 incidence and vaccine escape. Lancet Infectious Diseases, The, 2021, 21, 913-914.	9.1	51
16	Management of invading pathogens should be informed by epidemiology rather than administrative boundaries. Ecological Modelling, 2016, 324, 28-32.	2.5	46
17	Control fast or control smart: When should invading pathogens be controlled?. PLoS Computational Biology, 2018, 14, e1006014.	3.2	46
18	Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of <i>Streptococcus pneumoniae</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3102-3107.	7.1	42

#	Article	IF	Citations
19	Inference of the SARS-CoV-2 generation time using UK household data. ELife, 2022, 11, .	6.0	40
20	Increased frequency of travel in the presence of cross-immunity may act to decrease the chance of a global pandemic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180274.	4.0	36
21	Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180431.	4.0	35
22	Vaccine escape in a heterogeneous population: insights for SARS-CoV-2 from a simple model. Royal Society Open Science, 2021, 8, 210530.	2.4	33
23	Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study. PLoS Medicine, 2021, 18, e1003660.	8.4	32
24	Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190038.	4.0	31
25	Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. Journal of the Royal Society Interface, 2020, 17, 20200690.	3.4	30
26	Challenges for modelling interventions for future pandemics. Epidemics, 2022, 38, 100546.	3.0	30
27	A theoretical framework for transitioning from patient-level to population-scale epidemiological dynamics: influenza A as a case study. Journal of the Royal Society Interface, 2020, 17, 20200230.	3.4	26
28	Sustained transmission of Ebola in new locations: more likely than previously thought. Lancet Infectious Diseases, The, 2019, 19, 1058-1059.	9.1	25
29	Interventions targeting non-symptomatic cases can be important to prevent local outbreaks: SARS-CoV-2 as a case study. Journal of the Royal Society Interface, 2021, 18, 20201014.	3.4	25
30	Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools. Nature Communications, 2022, 13, 1106.	12.8	24
31	Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. Journal of Virology, 2018, 92, .	3.4	23
32	Are Epidemic Growth Rates More Informative than Reproduction Numbers?. Journal of the Royal Statistical Society Series A: Statistics in Society, 2022, 185, S5-S15.	1.1	23
33	The effect of the definition of †pandemic' on quantitative assessments of infectious disease outbreak risk. Scientific Reports, 2021, 11, 2547.	3.3	22
34	An exact method for quantifying the reliability of end-of-epidemic declarations in real time. PLoS Computational Biology, 2020, 16, e1008478.	3.2	22
35	Statistical Estimation of the Reproductive Number From Case Notification Data. American Journal of Epidemiology, 2021, 190, 611-620.	3.4	21
36	Time from Symptom Onset to Hospitalisation of Coronavirus Disease 2019 (COVID-19) Cases: Implications for the Proportion of Transmissions from Infectors with Few Symptoms. Journal of Clinical Medicine, 2020, 9, 1297.	2.4	19

#	Article	IF	CITATIONS
37	Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Scientific Reports, 2019, 9, 4049.	3.3	18
38	Commentary on the use of the reproduction number $\langle i \rangle R \langle i \rangle$ during the COVID-19 pandemic. Statistical Methods in Medical Research, 2022, 31, 1675-1685.	1.5	18
39	A hospital-related outbreak of SARS-CoV-2 associated with variant Epsilon (B.1.429) in Taiwan: transmission potential and outbreak containment under intensified contact tracing, January–February 2021. International Journal of Infectious Diseases, 2021, 110, 15-20.	3.3	18
40	Effect of Confusing Symptoms and Infectiousness on Forecasting and Control of Ebola Outbreaks. Clinical Infectious Diseases, 2018, 67, 1472-1474.	5.8	17
41	An analysis of school absences in England during the COVID-19 pandemic. BMC Medicine, 2021, 19, 137.	5.5	17
42	Estimating local outbreak risks and the effects of non-pharmaceutical interventions in age-structured populations: SARS-CoV-2 as a case study. Journal of Theoretical Biology, 2022, 535, 110983.	1.7	14
43	Link between the numbers of particles and variants founding new HIV-1 infections depends on the timing of transmission. Virus Evolution, 2019, 5, vey038.	4.9	13
44	Movement and conformity interact to establish local behavioural traditions in animal populations. PLoS Computational Biology, 2018, 14, e1006647.	3.2	12
45	Challenges in modeling the emergence of novel pathogens. Epidemics, 2021, 37, 100516.	3.0	12
46	The risk of SARS-CoV-2 outbreaks in low prevalence settings following the removal of travel restrictions. Communications Medicine, 2021, 1, .	4.2	12
47	Epidemiological Identification of A Novel Pathogen in Real Time: Analysis of the Atypical Pneumonia Outbreak in Wuhan, China, 2019–2020. Journal of Clinical Medicine, 2020, 9, 637.	2.4	11
48	Assessing the impact of lateral flow testing strategies on within-school SARS-CoV-2 transmission and absences: A modelling study. PLoS Computational Biology, 2022, 18, e1010158.	3.2	11
49	Selection on non-antigenic gene segments of seasonal influenza A virus and its impact on adaptive evolution. Virus Evolution, 2017, 3, vex034.	4.9	9
50	Evolutionary consequences of feedbacks between within-host competition and disease control. Evolution, Medicine and Public Health, 2020, 2020, 30-34.	2.5	7
51	Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility. Frontiers in Systems Biology, 2022, 2, .	0.7	7
52	Accounting for cross-immunity can improve forecast accuracy during influenza epidemics. Epidemics, 2021, 34, 100432.	3.0	5
53	Preface to theme issue †Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190375.	4.0	4
54	Evaluating strategies for spatial allocation of vaccines based on risk and centrality. Journal of the Royal Society Interface, 2022, 19, 20210709.	3.4	3

#	Article	IF	CITATIONS
55	When Do Epidemics End? Scientific Insights from Mathematical Modelling Studies. Centaurus, 2022, 64, 31-60.	0.6	3
56	The effect of notification window length on the epidemiological impact of COVID-19 contact tracing mobile applications. Communications Medicine, 2022, 2 , .	4.2	3
57	The pedagogical power of context: extending the Epidemiology of Eyam. Physics Education, 2020, 55, 015021.	0.5	2
58	Real-Time Prediction of the End of an Epidemic Wave: COVID-19 in China as a Case-Study. Fields Institute Communications, 2022, , 173-195.	1.3	2