Diana Cs Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698736/publications.pdf

Version: 2024-02-01

149 papers

4,924 citations

43 h-index 63 g-index

154 all docs 154 docs citations

154 times ranked 4970 citing authors

#	Article	IF	CITATIONS
1	Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics, 2022, 275, 125197.	4.0	21
2	Insights into optimized synthesis conditions of hollow microspheres of silica for water vapor adsorption. Chemical Engineering Research and Design, 2022, 177, 583-593.	5.6	2
3	Experimental and theoretical assessment of CO2 capture by adsorption on clinoptilolite. Chemical Engineering Research and Design, 2022, 177, 640-652.	5.6	10
4	LTA Zeolite Characterization Based on Pore Type Distribution. Industrial & Engineering Chemistry Research, 2022, 61, 2268-2279.	3.7	8
5	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	21.0	82
6	CO2 selectivity in CO2:CH4 and CO2:N2 mixtures on carbon microfibers (CMFs) and carbon microspheres (CMSs). Fuel, 2022, 324, 124242.	6.4	7
7	Assessing mass transfer rates in porous adsorbents using gas adsorption microcalorimetry. Chemical Engineering Science, 2021, 229, 115983.	3.8	5
8	Siloxane adsorption by porous silica synthesized from residual sand of wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 104805.	6.7	14
9	Editorial: Perspectives on Carbon Dioxide Capture and Conversion. Frontiers in Chemistry, 2021, 9, 664979.	3.6	O
10	Parametric Analysis of a Moving Bed Temperature Swing Adsorption (MBTSA) Process for Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 10736-10752.	3.7	16
11	High-temperature sorption of sodium vapors in typical outlet streams from biomass gasifiers. Brazilian Journal of Chemical Engineering, 2021, 38, 403.	1.3	O
12	H ₂ S and H ₂ O Combined Effect on CO ₂ Capture by Amino Functionalized Hollow Microsphere Silicas. Industrial & Engineering Chemistry Research, 2021, 60, 10139-10154.	3.7	6
13	Effect of Calcination Temperature and Chemical Composition of PAN-Derived Carbon Microfibers on N2, CO2, and CH4 Adsorption. Materials, 2021, 14, 3914.	2.9	9
14	Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. International Journal of Molecular Sciences, 2021, 22, 9164.	4.1	4
15	Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics. Adsorption, 2021, 27, 1043-1053.	3.0	2
16	Activated Carbons for H2S Capture. Engineering Materials, 2021, , 197-215.	0.6	0
17	Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption, 2020, 26, 225-240.	3.0	36
18	Evaluation of the thermal regeneration of an amine-grafted mesoporous silica used for CO2/N2 separation. Adsorption, 2020, 26, 203-215.	3.0	18

#	Article	IF	Citations
19	Adsorption microcalorimetry as a tool in the characterization of amine-grafted mesoporous silicas for CO2 capture. Adsorption, 2020, 26, 165-175.	3.0	23
20	Assessment of CO2 desorption from 13X zeolite for a prospective TSA process. Adsorption, 2020, 26, 813-824.	3.0	26
21	Assessing CO2 Adsorption on Amino-Functionalized Mesocellular Foams Synthesized at Different Aging Temperatures. Frontiers in Chemistry, 2020, 8, 591766.	3.6	15
22	Tailoring synthesis conditions of carbon microfibers to enhance the microporosity, CO2 and CH4 adsorption by using the response surface methodology. Microporous and Mesoporous Materials, 2020, 305, 110333.	4.4	6
23	Assessment of the potential use of zeolites synthesized from power plant fly ash to capture CO2 under post-combustion scenario. Adsorption, 2020, 26, 1153-1164.	3.0	14
24	Effect of ultramicropores on the mechanisms of H2S retention from biogas. Chemical Engineering Research and Design, 2020, 154, 241-249.	5.6	11
25	Representative Pores: An Efficient Method to Characterize Activated Carbons. Frontiers in Chemistry, 2020, 8, 595230.	3.6	10
26	Modeling geosmin removal in a full-scale filter. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190453.	0.8	2
27	Experimental designs for optimizing the purification of immunoglobulin G by mixed-mode chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1125, 121719.	2.3	2
28	Superior Performance of Mesoporous MOF MIL-100 (Fe) Impregnated with Ionic Liquids for CO ₂ Adsorption. Journal of Chemical & Engineering Data, 2019, 64, 2221-2228.	1.9	17
29	Deactivation Analysis of Industrial Spent Catalysts Applied to Lube Oil Hydrotreating in a Pilot Plant. Chemical Engineering and Technology, 2019, 42, 1018-1026.	1.5	4
30	Simulation of CO2/CH4 high pressure separation on microporous activated carbon. Chemical Engineering Communications, 2019, 206, 1414-1425.	2.6	2
31	Investigation of premature aging of zeolites used in the drying of gas streams. Chemical Engineering Communications, 2019, 206, 1367-1374.	2.6	12
32	Nanosponges for Carbon Dioxide Sequestration. Sustainable Agriculture Reviews, 2019, , 1-39.	1.1	0
33	Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsorption, 2018, 24, 279-291.	3.0	23
34	Insights on the Mechanisms of H ₂ S Retention at Low Concentration on Impregnated Carbons. Industrial & Engineering Chemistry Research, 2018, 57, 2248-2257.	3.7	22
35	Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation. Journal of Colloid and Interface Science, 2018, 522, 291-298.	9.4	7
36	Optimization of Cellulase Production by Trichoderma Strains Using Crude Glycerol as a Primary Carbon Source with a 24 Full Factorial Design. Waste and Biomass Valorization, 2018, 9, 357-367.	3.4	2

3

#	Article	IF	CITATIONS
37	Adsorption of biomolecules in porous silicas modified with zirconium. Effect of the textural properties and acidity. Microporous and Mesoporous Materials, 2018, 260, 146-154.	4.4	8
38	Polyamine-Grafted Magadiite: High CO2 Selectivity at Capture from CO2/N2 and CO2/CH4 Mixtures. Journal of CO2 Utilization, 2018, 23, 29-41.	6.8	23
39	Influence of buffer solutions in the adsorption of human serum proteins onto layered double hydroxide. International Journal of Biological Macromolecules, 2018, 106, 396-409.	7.5	23
40	Simple Procedure to Estimate Mass Transfer Coefficients from Uptake Curves on Activated Carbons. Chemical Engineering and Technology, 2018, 41, 1622-1630.	1.5	9
41	CO2 gas-adsorption calorimetry applied to the study of chemically activated carbons. Chemical Engineering Research and Design, 2018, 136, 753-760.	5 . 6	21
42	CO2 Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles. Materials, 2018, 11, 887.	2.9	36
43	Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 Capture. Journal of Environmental Chemical Engineering, 2018, 6, 4573-4587.	6.7	60
44	Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation. Applied Surface Science, 2017, 410, 315-325.	6.1	43
45	Computer simulation of adsorption and sitting of CO2, N2, CH4 and water on a new Al(OH)-fumarate MOF. Adsorption, 2017, 23, 423-431.	3.0	12
46	Amino-modified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation. Adsorption, 2017, 23, 405-421.	3.0	16
47	Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous and Mesoporous Materials, 2017, 249, 25-33.	4.4	63
48	Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Industrial Crops and Products, 2017, 109, 134-140.	5.2	65
49	Carbon Dioxide Capture by Pressure Swing Adsorption. Energy Procedia, 2017, 114, 2182-2192.	1.8	63
50	Adsorption study of reactive dyes onto porous clay heterostructures. Applied Clay Science, 2017, 135, 35-44.	5.2	80
51	Preface of the Brazilian Congress on Chemical Engineering (COBEQ) 2016. Canadian Journal of Chemical Engineering, 2017, 95, 2238-2238.	1.7	1
52	CO ₂ and H ₂ S Removal from CH ₄ -Rich Streams by Adsorption on Activated Carbons Modified with K ₂ CO ₃ , NaOH, or Fe ₂ O ₃ O ₃	5.1	64
53	Adsorption behavior of bovine serum albumin on Zn–Al and Mg–Al layered double hydroxides. Journal of Sol-Gel Science and Technology, 2016, 80, 748-758.	2.4	19
54	Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture. International Journal of Greenhouse Gas Control, 2016, 52, 344-356.	4.6	59

#	Article	IF	CITATIONS
55	Adsorption of Polycyclic Aromatic Hydrocarbons from Heavy Naphthenic Oil Using Commercial Activated Carbons. 1. Fluid-Particle Studies. Industrial & Engineering Chemistry Research, 2016, 55, 8176-8183.	3.7	11
56	Adsorption of Polycyclic Aromatic Hydrocarbons from Heavy Naphthenic Oil Using Commercial Activated Carbons. 2. Column Adsorption Studies. Industrial & Engineering Chemistry Research, 2016, 55, 8184-8190.	3.7	7
57	The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption. Microporous and Mesoporous Materials, 2016, 232, 53-64.	4.4	48
58	Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption, 2016, 22, 71-80.	3.0	79
59	Stability of an Al-Fumarate MOF and Its Potential for CO ₂ Capture from Wet Stream. Industrial & Company Engineering Chemistry Research, 2016, 55, 2134-2143.	3.7	63
60	Why the pore geometry model could affect the uniqueness of the PSD in AC characterization. Adsorption, 2016, 22, 215-222.	3.0	10
61	CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption, 2015, 21, 565-575.	3.0	29
62	CO ₂ Adsorption on Ionic Liquid—Modified Cu-BTC: Experimental and Simulation Study. Adsorption Science and Technology, 2015, 33, 223-242.	3.2	37
63	"Low Cost―Pore Expanded SBA-15 Functionalized with Amine Groups Applied to CO2 Adsorption. Materials, 2015, 8, 2495-2513.	2.9	48
64	Mineral sorbents for downstream sodium capture in biomass gasifiers. Fuel Processing Technology, 2015, 138, 629-636.	7.2	5
65	CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microporous and Mesoporous Materials, 2015, 209, 172-183.	4.4	96
66	Production of $\hat{l}\pm,\hat{l}^2$ -unsaturated esters via Knoevenagel condensation of buthyraldehyde and ethyl cyanoacetate over amine-containing carbon catalyst. Chemical Engineering Journal, 2015, 264, 565-569.	12.7	8
67	Evaluation of carbon dioxide–nitrogen separation through fixed bed measurements and simulations. Adsorption, 2014, 20, 945-957.	3.0	20
68	Human IgG adsorption using dye-ligand epoxy chitosan/alginate as adsorbent: influence of buffer system. Adsorption, 2014, 20, 925-934.	3.0	10
69	Improvement in the Adsorption of Anionic and Cationic Dyes from Aqueous Solutions: A Comparative Study using Aluminium Pillared Clays and Activated Carbon. Separation Science and Technology, 2014, 49, 741-751.	2.5	24
70	Adsorption of CO ₂ on Amine-Grafted Activated Carbon. Adsorption Science and Technology, 2014, 32, 141-151.	3.2	6
71	CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous and Mesoporous Materials, 2014, 187, 125-134.	4.4	73
72	Pd-loaded mesoporous silica as a robust adsorbent in adsorption/desorption desulfurization cycles. Fuel, 2014, 126, 96-103.	6.4	26

#	Article	IF	Citations
73	CO 2 adsorption in amine-grafted zeolite 13X. Applied Surface Science, 2014, 314, 314-321.	6.1	114
74	Metal-impregnated carbon applied as adsorbent for removal of sulphur compounds using fixed-bed column technology. Environmental Technology (United Kingdom), 2014, 35, 1367-1377.	2.2	4
75	Effect of the pore geometry in the characterization of the pore size distribution of activated carbons. Adsorption, 2013, 19, 601-609.	3.0	15
76	Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous and Mesoporous Materials, 2013, 180, 284-292.	4.4	99
77	Characterization of the PSD of activated carbons by a heterogeneous surface mixed model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 69-75.	4.7	12
78	Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Applied Clay Science, 2013, 71, 55-63.	5. 2	59
79	Adsorption of Cellulase Isolated from <i>Aspergillus Niger</i> on Chitosan/Alginate Particles Functionalized with Epichlorohydrin. Adsorption Science and Technology, 2013, 31, 17-34.	3.2	7
80	Strategies to Improve Pore-Size Distribution Characterization of Activated Carbons Using CO ₂ and N ₂ Isotherms: Volume Regularization and Etched Slit Models. Adsorption Science and Technology, 2013, 31, 263-274.	3.2	3
81	Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Brazilian Journal of Chemical Engineering, 2013, 30, 939-951.	1.3	60
82	Chromatographic Separation of Isomaltooligosaccharides on Ion-Exchange Resins: Effect of the Cationic Form. Adsorption Science and Technology, 2012, 30, 773-784.	3.2	17
83	Dye Ligand Epoxide Chitosan/Alginate: A Potential New Stationary Phase for Human IgG Purification. Adsorption Science and Technology, 2012, 30, 701-711.	3.2	18
84	Adsorption microcalorimetry applied to the characterisation of adsorbents for CO ₂ capture. Canadian Journal of Chemical Engineering, 2012, 90, 1372-1380.	1.7	25
85	Synthesis and Characterization of Metal-Supported Mesoporous Silicas Applied to the Adsorption of Benzothiophene. Adsorption Science and Technology, 2011, 29, 691-704.	3.2	7
86	Monte Carlo Simulation Strategies for Predicting CO ₂ /CH ₄ Adsorption onto Activated Carbons from Pure Gas Isotherms. Adsorption Science and Technology, 2011, 29, 651-661.	3.2	7
87	Storage and Transportation of Natural Gas at Moderate Pressures using Adsorption in Porous Materials. , 2011, , .		0
88	Modeling of the fixed - bed adsorption of carbon dioxide and a carbon dioxide - nitrogen mixture on zeolite 13X. Brazilian Journal of Chemical Engineering, 2011, 28, 533-544.	1.3	84
89	Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Industrial Crops and Products, 2011, 33, 579-583.	5.2	47
90	Carbon dioxide–nitrogen separation through pressure swing adsorption. Chemical Engineering Journal, 2011, 172, 698-704.	12.7	79

#	Article	IF	Citations
91	Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption, 2011, 17, 235-246.	3.0	175
92	Evaluation of a mixed geometry model for the characterization ofÂactivated carbons. Adsorption, 2011, 17, 551-560.	3.0	9
93	On the influence of heterogeneity of graphene sheets inÂtheÂdetermination of the pore size distribution of activated carbons. Adsorption, 2011, 17, 845-851.	3.0	17
94	Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption, 2011, 17, 853-861.	3.0	22
95	Adsorption of naphthalene and pyrene from isooctane solutions on commercial activated carbons. Adsorption, 2011, 17, 937-947.	3.0	17
96	Carbon dioxide–nitrogen separation through adsorption on activated carbon in a fixed bed. Chemical Engineering Journal, 2011, 169, 11-19.	12.7	153
97	Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel, 2011, 90, 113-119.	6.4	47
98	FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods. Fuel Processing Technology, 2011, 92, 1152-1155.	7.2	38
99	On the production of glucose and fructose syrups from cashew apple juice derivatives. Journal of Food Engineering, 2011, 102, 355-360.	5.2	17
100	Storage and Transportation of Natural Gas at Moderate Pressures using Adsorption in Porous Materials. , $2011, \ldots$		0
101	Characterization of activated carbons from peach stones through the mixed geometry model. Microporous and Mesoporous Materials, 2010, 134, 181-188.	4.4	29
102	Diffusion of linear paraffins in silicalite studied byÂtheÂZLC method in the presence of CO2. Adsorption, 2010, 16, 29-36.	3.0	18
103	Studies of C8 aromatics adsorption in BaY and mordenite molecular sieves using the headspace technique. Adsorption, 2010, 16, 525-530.	3.0	7
104	Characterization of PSD of activated carbons by using slit and triangular pore geometries. Applied Surface Science, 2010, 256, 5191-5197.	6.1	29
105	Molecular simulation of collection of methane isotherms in carbon material using all-atom and united atom models. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 53-60.	4.7	21
106	The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon, 2010, 48, 2554-2565.	10.3	48
107	Thiophene Adsorption on Microporous Activated Carbons Impregnated with PdCl ₂ . Energy & Lamp; Fuels, 2010, 24, 3436-3442.	5.1	34
108	Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis. , 2010, , 423-446.		0

#	Article	IF	Citations
109	Adsorption of methane in activated carbons obtained fromÂcoconut shells using H3PO4 chemical activation. Adsorption, 2009, 15, 271-277.	3.0	56
110	Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of Molecular Catalysis A, 2009, 300, 19-24.	4.8	68
111	Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II). Fuel, 2009, 88, 1885-1892.	6.4	71
112	A rapid method for evaluation of the oxidation stability of castor oil FAME: influence of antioxidant type and concentration. Fuel Processing Technology, 2009, 90, 1272-1277.	7.2	69
113	Properties of biodiesel oils formulated using different biomass sources and their blends. Renewable Energy, 2009, 34, 857-859.	8.9	88
114	Assessment of surface acidity in mesoporous materials containing aluminum and titanium. Applied Surface Science, 2009, 255, 6205-6209.	6.1	11
115	Transesterification of Castor Oil Using Ethanol: Effect of Water Removal by Adsorption onto Zeolite 3A. Energy & Samp; Fuels, 2009, 23, 1136-1138.	5.1	12
116	Adsorption of Carbon Dioxide onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium, and Modeling of Fixed-Bed Adsorption. Separation Science and Technology, 2009, 45, 73-84.	2.5	63
117	Purification and Characterization of Microbial Hyaluronic Acid by Solvent Precipitation and Size-Exclusion Chromatography. Separation Science and Technology, 2009, 44, 906-923.	2.5	15
118	Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: Influence of the surface acidity. Microporous and Mesoporous Materials, 2008, 108, 213-222.	4.4	52
119	Al and Ti-containing mesoporous molecular sieves: Synthesis, characterization and redox activity in the anthracene oxidation. Journal of Molecular Catalysis A, 2008, 281, 154-163.	4.8	58
120	Adsorptive separation of fructose and glucose from an agroindustrial waste of cashew industry. Bioresource Technology, 2008, 99, 2455-2465.	9.6	51
121	CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General, 2008, 334, 35-43.	4.3	281
122	MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A: General, 2008, 347, 162-168.	4.3	86
123	Adsorption Equilibria of Natural Gas Components on Activated Carbon: Pure and Mixed Gas Isotherms. Adsorption Science and Technology, 2008, 26, 323-332.	3.2	26
124	Removal of Aromatic Compounds from Mineral Naphthenic Oil by Adsorption. Industrial & Engineering Chemistry Research, 2008, 47, 3207-3212.	3.7	27
125	Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Applied Surface Science, 2007, 253, 5721-5725.	6.1	88
126	Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 2007, 100, 361-364.	4.4	165

#	Article	lF	CITATIONS
127	Design and optimization of new simulated moving bed plants. Brazilian Journal of Chemical Engineering, 2006, 23, 171-181.	1.3	4
128	A Theoretical and Experimental Study of Charge and Discharge Cycles in a Storage Vessel for Adsorbed Natural Gas. Adsorption, 2005, 11, 147-157.	3.0	50
129	Methane Adsorption Storage Using Microporous Carbons Obtained from Coconut Shells. Adsorption, 2005, 11, 911-915.	3.0	42
130	Separation of Fructose and Glucose from Cashew Apple Juice by SMB Chromatography. Separation Science and Technology, 2005, 40, 1761-1780.	2.5	19
131	Thermo-Oxidative Stability of Mineral Naphthenic Insulating Oils:Â Combined Effect of Antioxidants and Metal Passivator. Industrial & Engineering Chemistry Research, 2004, 43, 7428-7434.	3.7	64
132	Dextran and fructose separation on an SMB continuous chromatographic unit. Biochemical Engineering Journal, 2002, 12, 215-221.	3.6	14
133	Design methodology and operation of a simulated moving bed reactor for the inversion of sucrose and glucose–fructose separation. Chemical Engineering Journal, 2001, 82, 95-107.	12.7	75
134	Fructose–glucose separation in a SMB pilot unit: Modeling, simulation, design, and operation. AICHE Journal, 2001, 47, 2042-2051.	3.6	91
135	Sorption and Diffusion of p-Xylene and o-Xylene in Aluminophosphate Molecular Sieve AlPO4-11. Adsorption, 2000, 6, 53-59.	3.0	17
136	EFFECTS OF ADSORPTION KINETICS ON SIMULATED MOVING BED PERFORMANCE. , 2000, , .		0
137	Obtainment of High-Fructose Solutions from Cashew (Anacardium occidentale) Apple Juice by Simulated Moving-Bed Chromatography. Separation Science and Technology, 2000, 35, 2561-2581.	2.5	34
138	SMB chromatography applied to the separation/purification of fructose from cashew apple juice. Brazilian Journal of Chemical Engineering, 2000, 17, 507-516.	1.3	12
139	Enantiomers separation by simulated moving bed chromatography. Journal of Chromatography A, 1999, 865, 187-200.	3.7	24
140	Design of a simulated moving bed in the presence of mass-transfer resistances. AICHE Journal, 1999, 45, 956-966.	3.6	111
141	Bilinear Driving Force Approximation in the Modeling of a Simulated Moving Bed Using Bidisperse Adsorbents. Industrial & Engineering Chemistry Research, 1999, 38, 3519-3529.	3.7	27
142	REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION. Brazilian Journal of Chemical Engineering, 1997, 14, .	1.3	6
143	ESTUDOS DE MICROCALORIMETRIA DE ADSORÇÃO DE CO2 EM ZEÓLITOS "BINDER FREE―COM DIFEREN CÃTIONS DE COMPENSAÇÃO. , 0, , .	ITES	O
144	AVALIAÇÃO DA EFICIÊNCIA DE PROCESSOS PSA NA REMOÇÃO DE CO2., 0,,.		0

#	Article	IF	CITATIONS
145	EFEITO DO CALOR DE ADSORÇÃ f O DA MISTURA CO2-N2 NA TEMPERATURA DE SAÃDA DE UMA COLUNA DE LEITO FIXO. , 0, , .		О
146	ADSORÇÃ f O DE IMUNOGLOBULINAS G EM SILICAS MESOPOROSAS DO TIPO SBA $15.,0,,.$		О
147	ADSORÇÃO DE PROTEÃNAS DO SORO HUMANO EM QUITOSANA/ALGINATO EPOXIDADO IMOBILIZADO CON CORANTES REATIVOS: INFLUÊNCIA DOS SISTEMAS TAMPONANTES. , 0, , .	1	o
148	ADSORÇÃ f O DE HSA EM SILICAS MESOPOROSAS DO TIPO SBA 15 COM DIFERENTES RAZOES MOLARES DE Si/Zr. , 0, , .		O
149	PURIFICAÇÃO DE PROTEÃNAS DO SORO HUMANO POR CROMATOGRAFIA DE MODO MISTO. , 0, , .		0