Daria Pagliara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697756/publications.pdf

Version: 2024-02-01

32	2,200	18	32
papers	citations	h-index	g-index
32	32	32	3301 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	HLA-haploidentical stem cell transplantation after removal of $\hat{l}\pm\hat{l}^2+T$ and B cells in children with nonmalignant disorders. Blood, 2014, 124, 822-826.	1.4	385
2	Outcome of children with acute leukemia given HLA-haploidentical HSCT after $\hat{l}\pm\hat{l}^2$ T-cell and B-cell depletion. Blood, 2017, 130, 677-685.	1.4	261
3	γδT-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood, 2015, 125, 2349-2358.	1.4	224
4	Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood, 2012, 120, 473-476.	1.4	170
5	A novel flow cytometry–based platelet aggregation assay. Blood, 2013, 121, e70-e80.	1.4	131
6	Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncolmmunology, 2018, 7, e1433518.	4.6	120
7	Interleukin-7 Mediates Selective Expansion of Tumor-redirected Cytotoxic T Lymphocytes (CTLs) without Enhancement of Regulatory T-cell Inhibition. Clinical Cancer Research, 2014, 20, 131-139.	7.0	114
8	Unrelated donor vs HLA-haploidentical α/β T-cell– and B-cell–depleted HSCT in children with acute leukemia. Blood, 2018, 132, 2594-2607.	1.4	101
9	Ex vivo expansion of mesenchymal stromal cells. Best Practice and Research in Clinical Haematology, 2011, 24, 73-81.	1.7	76
10	Multifunctional human CD56low CD16low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients. Haematologica, 2015, 100, 489-498.	3 . 5	72
11	Interleukin 15 Provides Relief to CTLs from Regulatory T Cell–Mediated Inhibition: Implications for Adoptive T Cell–Based Therapies for Lymphoma. Clinical Cancer Research, 2013, 19, 106-117.	7.0	68
12	Selective Depletion of αβ T Cells and B Cells for Human Leukocyte Antigen–Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency. Biology of Blood and Marrow Transplantation, 2016, 22, 2056-2064.	2.0	59
13	Efficacy of two different doses of rabbit anti-T-lymphocyte globulin to prevent graft-versus-host disease in children with haematological malignancies transplanted from an unrelated donor: a multicentre, randomised, open-label, phase 3 trial. Lancet Oncology, The, 2017, 18, 1126-1136.	10.7	58
14	Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica, 2014, 99, 1248-1254.	3 . 5	57
15	HLA-Haploidentical T Cell–Depleted Allogeneic Hematopoietic Stem Cell Transplantation in Children with Fanconi Anemia. Biology of Blood and Marrow Transplantation, 2014, 20, 571-576.	2.0	52
16	Allogeneic hematopoietic stem cell transplantation in children with sickle cell disease. Pediatric Blood and Cancer, 2012, 59, 372-376.	1.5	42
17	Occurrence of long-term effects after hematopoietic stem cell transplantation in children affected by acute leukemia receiving either busulfan or total body irradiation: results of an AIEOP (Associazione Italiana Ematologia Oncologia Pediatrica) retrospective study. Bone Marrow Transplantation, 2020, 55, 1918-1927.	2.4	28
18	HLA-haploidentical TCRαÎ 2 +/CD19+-depleted stem cell transplantation in children and young adults with Fanconi anemia. Blood Advances, 2021, 5, 1333-1339.	5.2	22

#	Article	IF	CITATIONS
19	TCRÎ \pm Î 2 /CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different nonmalignant disorders. Blood Advances, 2022, 6, 281-292.	5.2	22
20	Immune Modulation Properties of Zoledronic Acid on $TcR\hat{I}^3\hat{I}$ T-Lymphocytes After $TcR\hat{I}^2/CD19$ -Depleted Haploidentical Stem Cell Transplantation: An analysis on 46 Pediatric Patients Affected by Acute Leukemia. Frontiers in Immunology, 2020, 11, 699.	4.8	21
21	Reconstitution of multifunctional CD56 sup low /sup CD16 sup low /sup natural killer cell subset in children with acute leukemia given $\hat{l}\pm\hat{l}^2$ T cell-depleted HLA-haploidentical haematopoietic stem cell transplantation. Oncolmmunology, 2017, 6, e1342024.	4.6	20
22	Phenotypic and Functional Characterization of NK Cells in $\hat{l}\pm\hat{l}^2T$ -Cell and B-Cell Depleted Haplo-HSCT to Cure Pediatric Patients with Acute Leukemia. Cancers, 2020, 12, 2187.	3.7	19
23	Recipient CTLA-4*CT60-AA genotype is a prognostic factor for acute graft-versus-host disease in hematopoietic stem cell transplantation for thalassemia. Human Immunology, 2012, 73, 282-286.	2.4	18
24	Cytotoxic T lymphocytes for the treatment of viral infections and posttransplant lymphoproliferative disorders in transplant recipients. Current Opinion in Infectious Diseases, 2012, 25, 431-437.	3.1	16
25	Novel X-Linked Inhibitor of Apoptosis Mutation in Very Early-Onset Inflammatory Bowel Disease Child Successfully Treated with HLA-Haploidentical Hemapoietic Stem Cells Transplant after Removal of $\hat{l}\pm\hat{l}^2+T$ and B Cells. Frontiers in Immunology, 2017, 8, 1893.	4.8	16
26	Kindlin-3–independent adhesion of neutrophils from patients with leukocyte adhesion deficiency type III. Journal of Allergy and Clinical Immunology, 2014, 133, 1215-1218.e3.	2.9	11
27	Response to comment on Multifunctional human CD56low CD16low NK cells are the prominent subset in bone marrow of both pediatric healthy donors and leukemic patients. Haematologica, 2015, 100, e332-3.	3.5	6
28	Low percentages of circulating CD8+/CD45RA+ human T lymphocytes expressing \hat{l}^2 7 integrin correlate with the occurrence of intestinal acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Experimental Hematology, 2006, 34, 1429-1434.	0.4	4
29	Partial T cell defects and expanded CD56bright NK cells in an SCID patient carrying hypomorphic mutation in the <i>IL2RG</i> gene. Journal of Leukocyte Biology, 2020, 108, 739-748.	3.3	3
30	The strange case of the lost <i>NRAS</i> mutation in a child with juvenile myelomonocytic leukemia. Pediatric Blood and Cancer, 2012, 59, 580-582.	1.5	2
31	Acute abdomen after allogenic haematopoietic stem cell transplantation. Mental Illness, 2011, 3, 32.	0.8	1
32	Preservation of Antigen-Specific Functions of $\hat{l}\pm\hat{l}^2$ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy. Frontiers in Immunology, 2017, 8, 332.	4.8	1