
Robert T Hensley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, 2016, 50, 10297-10307.	10.0	239
2	River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry, 2018, 141, 503-521.	3.5	96
3	Inferring nitrogen removal in large rivers from highâ€resolution longitudinal profiling. Limnology and Oceanography, 2014, 59, 1152-1170.	3.1	45
4	On the emergence of diel solute signals in flowing waters. Water Resources Research, 2016, 52, 759-772.	4.2	39
5	High frequency measurements of reach scale nitrogen uptake in a fourth order river with contrasting hydromorphology and variable water chemistry (<scp>W</scp> eiße <scp>E</scp> lster,) Tj ETQq1	1 0478431	.4 n ge8 T ∕Ove
6	Hydraulic effects on nitrogen removal in a tidal springâ€fed river. Water Resources Research, 2015, 51, 1443-1456.	4.2	21
7	Controls on solute transport in large spring-fed karst rivers. Limnology and Oceanography, 2012, 57, 912-924.	3.1	20
8	Flow Extremes as Spatiotemporal Control Points on River Solute Fluxes and Metabolism. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 537-555.	3.0	19
9	Estimating Benthic Light Regimes Improves Predictions of Primary Production and constrains Light-Use Efficiency in Streams and Rivers. Ecosystems, 2021, 24, 825-839.	3.4	18
10	Diffusion and seepage-driven element fluxes from the hyporheic zone of a karst river. Freshwater Science, 2015, 34, 206-221.	1.8	17
11	Harnessing the NEON data revolution to advance open environmental science with a diverse and dataâ€capable community. Ecosphere, 2021, 12, .	2.2	15
12	Channel Filtering Generates Multifractal Solute Signals. Geophysical Research Letters, 2018, 45, 11,722.	4.0	14
13	Flow reversals as a driver of ecosystem transition in Florida's springs. Freshwater Science, 2017, 36, 14-25.	1.8	13
14	Stream phosphorus dynamics of minimally impacted coastal plain watersheds. Hydrological Processes, 2017, 31, 1636-1649.	2.6	8
15	Evaluating spatiotemporal variation in water chemistry of the upper Colorado River using longitudinal profiling. Hydrological Processes, 2020, 34, 1782-1793.	2.6	8
16	Fertilization has negligible effects on nutrient export and stream biota in two North Florida forested watersheds. Forest Ecology and Management, 2020, 465, 118096.	3.2	6
17	Isolating stream metabolism and nitrate processing at point-scales, and controls on heterogeneity. Freshwater Science, 2018, 37, 238-250.	1.8	5
18	Nitrate depletion dynamics and primary production in riverine benthic chambers. Freshwater Science, 2020, 39, 169-182.	1.8	5

#	Article	IF	CITATIONS
19	The <scp>AEMONâ€J</scp> "Hacking Limnology―Workshop Series & Virtual Summit: Incorporating Data Science and Open Science in Aquatic Research. Limnology and Oceanography Bulletin, 2021, 30, 140-143.	0.4	4
20	A comparison of water quality sensor deployment designs in wadeable streams. Limnology and Oceanography: Methods, 2021, 19, 673.	2.0	2
21	Using large, open datasets to understand spatial and temporal patterns in lotic ecosystems: <scp>NEON</scp> case studies. Ecosphere, 2022, 13, .	2.2	1