
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Imaging of Individual Organic Molecules in Supramolecular Assembly Strongly Fixed via Multivalent Electrostatic Interactions. Journal of Physical Chemistry C, 2021, 125, 4917-4923.	3.1	4
2	Manipulation of Precise Molecular Arrangements and Their Photochemical Properties on Inorganic Surfaces via Multiple Electrostatic Interactions. Bulletin of the Chemical Society of Japan, 2021, 94, 2886-2897.	3.2	11
3	Surface Menshutkin S _N 2 Reaction on Basic Gold Clusters Provides Novel Opportunities for the Cationization and Functionalization of Molecular Metal Clusters. Journal of Physical Chemistry Letters, 2021, 12, 11761-11765.	4.6	3
4	Distinctive stability of a free-standing monolayer clay mineral nanosheet <i>via</i> transmission electron microscopy. Physical Chemistry Chemical Physics, 2020, 22, 25095-25102.	2.8	6
5	Tuning Emission Properties by Dye Encapsulation into Layered Silicates. Structure and Bonding, 2020, , 185-204.	1.0	1
6	Atomic-Scale Imaging of a Free-Standing Monolayer Clay Mineral Nanosheet Using Scanning Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 3357-3361.	4.6	12
7	Super Polycationic Molecular Compounds: Au144(SR+)60 Clusters. Journal of Physical Chemistry C, 2019, 123, 21768-21773.	3.1	3
8	Basic [Au ₂₅ (SCH ₂ CH ₂ Py) ₁₈] ^{â^²} â‹Na ⁺ Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie - International Edition, 2019, 58, 13411-13415.	13.8	12
9	Basic [Au 25 (SCH 2 CH 2 Py) 18] â^' â‹Na + Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie, 2019, 131, 13545-13549.	2.0	3
10	Ligand free green plasma-in-liquid synthesis of Au/Ag alloy nanoparticles. New Journal of Chemistry, 2018, 42, 5680-5687.	2.8	13
11	<scp>l</scp> -Arginine-Stabilized Highly Uniform Ag Nanoparticles Prepared in a Microwave-Induced Plasma-in-Liquid Process (MWPLP). Bulletin of the Chemical Society of Japan, 2018, 91, 362-367.	3.2	12
12	Sputter Deposition toward Short Cationic Thiolated Fluorescent Gold Nanoclusters: Investigation of Their Unique Structural and Photophysical Characteristics Using High-Performance Liquid Chromatography. Langmuir, 2018, 34, 4024-4030.	3.5	9
13	Kinetics of Cationic-Ligand-Exchange Reactions in Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 18142-18150.	3.1	24
14	Ultrarapid Cationization of Gold Nanoparticles via a Single-Step Ligand Exchange Reaction. Langmuir, 2018, 34, 10668-10672.	3.5	9
15	Water-dispersible fluorescent silver nanoparticles via sputtering deposition over liquid polymer using a very short thiol ligand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 25-29.	4.7	20
16	Charge Neutralization Strategy: A Novel Synthetic Approach to Fully Cationized Thiolateâ€Protected Au ₂₅ (SR ⁺) ₁₈ Clusters with Atomic Precision. ChemNanoMat, 2017, 3, 298-302.	2.8	7
17	Effect of H2O2 on Au nanoparticle preparation using microwave-induced plasma in liquid. Materials Chemistry and Physics, 2017, 193, 7-12.	4.0	17
18	Unique fluorescence behavior of dyes on the clay minerals surface: Surface Fixation Induced Emission (S-FIE). Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 67-79.	3.9	48

#	Article	IF	CITATIONS
19	Synthesis of cationically charged photoluminescent coinage metal nanoclusters by sputtering over a liquid polymer matrix. New Journal of Chemistry, 2017, 41, 6828-6833.	2.8	12
20	Small Nanosized Oxygen-Deficient Tungsten Oxide Particles: Mechanistic Investigation with Controlled Plasma Generation in Water for Their Preparation. ACS Omega, 2017, 2, 5104-5110.	3.5	15
21	Structural Control Parameters for Formation of Single-Crystalline β-Sn Nanorods in Organic Phase. Crystal Growth and Design, 2017, 17, 4554-4562.	3.0	13
22	Synthesis of Positively Charged Photoluminescent Bimetallic Au–Ag Nanoclusters by Double-Target Sputtering Method on a Biocompatible Polymer Matrix. Langmuir, 2017, 33, 9144-9150.	3.5	33
23	Real-Space Investigation of Energy Transfer through Electron Tomography. Journal of Physical Chemistry C, 2017, 121, 28395-28402.	3.1	7
24	Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters. Accounts of Chemical Research, 2017, 50, 2986-2995.	15.6	50
25	Photoenergy Conversion. Nanostructure Science and Technology, 2017, , 357-371.	0.1	0
26	Deâ€Novo Synthesis of Goldâ€Nanoparticleâ€Embedded, Nitrogenâ€Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. ChemCatChem, 2016, 8, 502-509.	3.7	62
27	Photochemical Reaction in Two Dimensional Assemblies of Functional Dyes on Inorganic Nanosheets. Kobunshi Ronbunshu, 2016, 73, 12-18.	0.2	0
28	Highly stable and blue-emitting copper nanocluster dispersion prepared by magnetron sputtering over liquid polymer matrix. RSC Advances, 2016, 6, 105030-105034.	3.6	13
29	Reproducible shape control of single-crystal SnO micro particles. RSC Advances, 2016, 6, 26725-26733.	3.6	7
30	Controlling an electrostatic repulsion by oppositely charged surfactants towards positively charged fluorescent gold nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 8773-8776.	2.8	11
31	Fully Cationized Gold Clusters: Synthesis of Au ₂₅ (SR ⁺) ₁₈ . Journal of Physical Chemistry Letters, 2016, 7, 3718-3722.	4.6	38
32	Understanding the primary and secondary aggregation states of sputtered silver nanoparticles in thiolate matrix and their immobilization in resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 437-441.	4.7	11
33	Titanium oxide nanoparticle dispersions in a liquid monomer and solid polymer resins prepared by sputtering. New Journal of Chemistry, 2016, 40, 9337-9343.	2.8	11
34	Au Nanoparticles Prepared Using a Coated Electrode in Plasma-in-Liquid Process: Effect of the Solution pH. Journal of Nanoscience and Nanotechnology, 2016, 16, 9257-9262.	0.9	17
35	Ligand Effect on the Formation of Gold Nanoparticles via Sputtering Deposition over a Liquid Matrix. Bulletin of the Chemical Society of Japan, 2016, 89, 1054-1056.	3.2	18
36	Room temperature phosphorescence from a guest molecule confined in the restrictive space of an organic-inorganic supramolecular assembly. Photochemical and Photobiological Sciences, 2016, 15, 959-963.	2.9	13

#	Article	IF	CITATIONS
37	Thiolate–Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics. Scientific Reports, 2016, 6, 29928.	3.3	33
38	Matrix Sputtering into Liquid Mercaptan: From Blue-Emitting Copper Nanoclusters to Red-Emitting Copper Sulfide Nanoclusters. Langmuir, 2016, 32, 12159-12165.	3.5	16
39	Growth of sputtered silver nanoparticles on a liquid mercaptan matrix with controlled viscosity and sputter rate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 106-111.	4.7	21
40	Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet. Physical Chemistry Chemical Physics, 2016, 18, 5404-5411.	2.8	20
41	A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. Journal of Materials Chemistry C, 2016, 4, 2228-2234.	5.5	40
42	Proton-assisted low-temperature sintering of Cu fine particles stabilized by a proton-initiating degradable polymer. RSC Advances, 2015, 5, 102904-102910.	3.6	12
43	Enhanced Terahertz Emission from Cu <i>x</i> O/Metal Thin Film Deposited on Columnar-Structured Porous Silicon. Bulletin of the Chemical Society of Japan, 2015, 88, 1385-1387.	3.2	5
44	Black TiO2 Nanoparticles by a Microwave-induced Plasma over Titanium Complex Aqueous Solution. Chemistry Letters, 2015, 44, 1327-1329.	1.3	10
45	A Novel Physical Approach for Cationic–Thiolate Protected Fluorescent Gold Nanoparticles. Scientific Reports, 2015, 5, 15372.	3.3	18
46	One-pot preparation of cationic charged Pt nanoparticles by the autocatalytic hydrolysis of acetylthiocholine. New Journal of Chemistry, 2015, 39, 4214-4217.	2.8	6
47	Sputtering synthesis and optical investigation of octadecanethiol-protected fluorescent Au nanoparticles. New Journal of Chemistry, 2015, 39, 5895-5897.	2.8	24
48	Synthesis and fluorescence properties of a nanoisland-structured SiO _x /Cu _x O composite. Journal of Materials Chemistry C, 2015, 3, 8358-8363.	5.5	8
49	Manipulation of supramolecular 2D assembly of functional dyes toward artificial light-harvesting systems. Pure and Applied Chemistry, 2015, 87, 3-14.	1.9	10
50	Formation and Optical Properties of Fluorescent Gold Nanoparticles Obtained by Matrix Sputtering Method with Volatile Mercaptan Molecules in the Vacuum Chamber and Consideration of Their Structures. Langmuir, 2015, 31, 4323-4329.	3.5	51
51	Silver sputtering into a liquid matrix containing mercaptans: the systematic size control of silver nanoparticles in single nanometer-orders. New Journal of Chemistry, 2015, 39, 4227-4230.	2.8	32
52	Synthesis and fluorescence properties of columnar porous silicon: the influence of Cu-coating on the photoluminescence behaviour of hydrofluoric-acid-treated aged columnar porous silicon. New Journal of Chemistry, 2015, 39, 6267-6273.	2.8	10
53	Plasma induced tungsten doping of TiO ₂ particles for enhancement of photocatalysis under visible light. Physical Chemistry Chemical Physics, 2015, 17, 24556-24559.	2.8	20
54	Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 2014, 30, 447-451.	3.5	167

#	Article	IF	CITATIONS
55	Double-Wall TiO ₂ Nanotube Arrays: Enhanced Photocatalytic Activity and <i>In Situ</i> TEM Observations at High Temperature. ACS Applied Materials & Interfaces, 2014, 6, 19924-19932.	8.0	28
56	Supramolecular-Surface Photochemistry: Supramolecular Assembly Organized on a Clay Surface Facilitates Energy Transfer between an Encapsulated Donor and a Free Acceptor. Journal of Physical Chemistry C, 2014, 118, 10198-10203.	3.1	26
57	"Surface-Fixation Induced Emission―of Porphyrazine Dye by a Complexation with Inorganic Nanosheets. Journal of Physical Chemistry C, 2014, 118, 20466-20471.	3.1	51
58	Adsorption and photochemical behaviors of the novel cationic xanthene derivative on the clay surface. Tetrahedron Letters, 2014, 55, 1024-1027.	1.4	13
59	In Situ Transmission Electron Microscopic Observation of Double-wall TiO2 Nanotube Arrays at High Temperature. Chemistry Letters, 2014, 43, 1514-1516.	1.3	5
60	Investigation of adsorption behavior and energy transfer of cationic porphyrins on clay surface at low loading levels by picosecond time-resolved fluorescence measurement. Research on Chemical Intermediates, 2013, 39, 269-278.	2.7	5
61	Size-Matching Effect on Inorganic Nanosheets: Control of Distance, Alignment, and Orientation of Molecular Adsorption as a Bottom-Up Methodology for Nanomaterials. Langmuir, 2013, 29, 2108-2119.	3.5	133
62	Artificial Light-Harvesting Model in a Self-Assembly Composed of Cationic Dyes and Inorganic Nanosheet. Journal of Physical Chemistry C, 2013, 117, 9154-9163.	3.1	24
63	Efficient Singlet–Singlet Energy Transfer in a Novel Host–Guest Assembly Composed of an Organic Cavitand, Aromatic Molecules, and a Clay Nanosheet. Langmuir, 2013, 29, 1748-1753.	3.5	42
64	Regulation of the Collisional Self-Quenching of Fluorescence in Clay/Porphyrin Complex by Strong Host–Guest Interaction. Journal of Physical Chemistry A, 2012, 116, 12065-12072.	2.5	41
65	The Mechanism of the Porphyrin Spectral Shift on Inorganic Nanosheets: The Molecular Flattening Induced by the Strong Host–Guest Interaction due to the "Size-Matching Ruleâ€: Journal of Physical Chemistry C, 2012, 116, 7879-7885.	3.1	80
66	Controlling the Microadsorption Structure of Porphyrin Dye Assembly on Clay Surfaces Using the "Size-Matching Rule―for Constructing an Efficient Energy Transfer System. ACS Applied Materials & Interfaces, 2012, 4, 811-816.	8.0	38
67	Unique photochemical behavior of novel tetracationic pyrene derivative on the clay surface. Tetrahedron Letters, 2012, 53, 5800-5802.	1.4	18
68	Efficient Excited Energy Transfer Reaction in Clay/Porphyrin Complex toward an Artificial Light-Harvesting System. Journal of the American Chemical Society, 2011, 133, 14280-14286.	13.7	180
69	Novel Methodology To Control the Adsorption Structure of Cationic Porphyrins on the Clay Surface Using the "Size-Matching Ruleâ€+ Langmuir, 2011, 27, 10722-10729.	3.5	63
70	Unique Solvatochromism of a Membrane Composed of a Cationic Porphyrinâ^'Clay Complex. Langmuir, 2010, 26, 4639-4641.	3.5	50