Keriann M Backus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696678/publications.pdf

Version: 2024-02-01

471509 580821 2,379 26 17 25 citations h-index g-index papers 32 32 32 3639 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunable Amineâ€Reactive Electrophiles for Selective Profiling of Lysine. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
2	Tunable Amineâ€Reactive ElectrophilesÂfor Selective Profiling of Lysine. Angewandte Chemie, 2022, 134, e202112107.	2.0	3
3	Tunable heteroaromatic azoline thioethers (HATs) for cysteine profiling. Chemical Science, 2022, 13, 763-774.	7.4	15
4	Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click Chemistry Product Fragmentation. Analytical Chemistry, 2022, 94, 3800-3810.	6. 5	16
5	SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State–Dependent Redox-Sensitive Cysteines. Molecular and Cellular Proteomics, 2022, 21, 100218.	3.8	15
6	Photoaffinity labelling strategies for mapping the small molecule–protein interactome. Organic and Biomolecular Chemistry, 2021, 19, 7792-7809.	2.8	39
7	Multiplexed CuAAC Suzuki–Miyaura Labeling for Tandem Activity-Based Chemoproteomic Profiling. Analytical Chemistry, 2021, 93, 2610-2618.	6.5	26
8	SP3â€FAIMS Chemoproteomics for Highâ€Coverage Profiling of the Human Cysteinome**. ChemBioChem, 2021, 22, 1841-1851.	2.6	45
9	From chemoproteomicâ€detected amino acids to genomic coordinates: insights into precise multiâ€omic data integration. Molecular Systems Biology, 2021, 17, e9840.	7.2	17
10	New approaches to target RNA binding proteins. Current Opinion in Chemical Biology, 2021, 62, 13-23.	6.1	40
11	Integrative X-ray Structure and Molecular Modeling for the Rationalization of Procaspase-8 Inhibitor Potency and Selectivity. ACS Chemical Biology, 2020, 15, 575-586.	3.4	5
12	Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorganic and Medicinal Chemistry, 2019, 27, 3421-3439.	3.0	15
13	Applications of Reactive Cysteine Profiling. Current Topics in Microbiology and Immunology, 2018, 420, 375-417.	1.1	27
14	Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases. Cell, 2017, 168, 517-526.e18.	28.9	173
15	A Screen for Protein–Protein Interactions in Live Mycobacteria Reveals a Functional Link between the Virulence-Associated Lipid Transporter LprG and the Mycolyltransferase Antigen 85A. ACS Infectious Diseases, 2017, 3, 336-348.	3.8	23
16	Covalent Modulators of the Vacuolar ATPase. Journal of the American Chemical Society, 2017, 139, 639-642.	13.7	39
17	Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer. Cell, 2017, 171, 696-709.e23.	28.9	204
18	Global profiling of lysine reactivity and ligandability in the human proteome. Nature Chemistry, 2017, 9, 1181-1190.	13.6	319

#	Article	IF	CITATIONS
19	Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine. Cell, 2016, 166, 126-139.	28.9	187
20	Chemical Proteomic Profiling of Human Methyltransferases. Journal of the American Chemical Society, 2016, 138, 13335-13343.	13.7	79
21	Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells. Science Signaling, 2016, 9, rs10.	3.6	141
22	Proteome-wide covalent ligand discovery in native biological systems. Nature, 2016, 534, 570-574.	27.8	651
23	The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions. Journal of Biological Chemistry, 2014, 289, 25041-25053.	3.4	52
24	ESI-MS Assay of M. tuberculosis Cell Wall Antigen 85 Enzymes Permits Substrate Profiling and Design of a Mechanism-Based Inhibitor. Journal of the American Chemical Society, 2011, 133, 13232-13235.	13.7	32
25	Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nature Chemical Biology, 2011, 7, 228-235.	8.0	202
26	Introduction to the themed collection on Covalent Drug Discovery. RSC Medicinal Chemistry, 0, , .	3.9	0