
M Teresa Perez-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696523/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltageâ€dependent conformational changes of Kv1.3 channels activate cell proliferation. Journal of Cellular Physiology, 2021, 236, 4330-4347.	4.1	8
2	miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Molecular Metabolism, 2021, 53, 101306.	6.5	4
3	Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomaterialia, 2020, 115, 264-274.	8.3	6
4	Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. Journal of Clinical Medicine, 2020, 9, 1402.	2.4	21
5	Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo. Translational Research, 2020, 224, 40-54.	5.0	11
6	Kv1.3 Channel Inhibition Limits Uremia-Induced Calcification in Mouse and Human Vascular Smooth Muscle. Function, 2020, 2, zqaa036.	2.3	2
7	Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e273-e286.	2.4	8
8	Activation of the cation channel TRPM3 in perivascular nerves induces vasodilation of resistance arteries. Journal of Molecular and Cellular Cardiology, 2019, 129, 219-230.	1.9	18
9	The secret life of ion channels: Kv1.3 potassium channels and proliferation. American Journal of Physiology - Cell Physiology, 2018, 314, C27-C42.	4.6	63
10	Kv channels and vascular smooth muscle cell proliferation. Microcirculation, 2018, 25, e12427.	1.8	9
11	Voltage-Dependent Conformational Changes of KV1.3 Potassium Channels are an Essential Element for KV1.3-induced cell proliferation. Biophysical Journal, 2018, 114, 378a.	0.5	0
12	Phenotypic Modulation of Cultured Primary Human Aortic Vascular Smooth Muscle Cells by Uremic Serum. Frontiers in Physiology, 2018, 9, 89.	2.8	20
13	Activation of TRPM3 in Perivascular Sensory Nerves Induces Dilation of Mouse Resistance Arteries. Biophysical Journal, 2017, 112, 404a.	0.5	0
14	Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. Journal of Experimental Medicine, 2017, 214, 511-528.	8.5	92
15	Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension. Journal of Physiology, 2017, 595, 1497-1513.	2.9	31
16	Proliferative Role of Kv11 Channels in Murine Arteries. Frontiers in Physiology, 2017, 8, 500.	2.8	6
17	Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation. Journal of Biological Chemistry, 2016, 291, 3569-3580.	3.4	43
18	Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway. Pflugers Archiv European Journal of Physiology, 2015, 467, 1711-1722.	2.8	33

M TERESA PEREZ-GARCIA

#	Article	IF	CITATIONS
19	Regulation of Smooth Muscle Dystrophin and Synaptopodin 2 Expression by Actin Polymerization and Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1489-1497.	2.4	40
20	α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochemical Pharmacology, 2015, 97, 281-291.	4.4	22
21	Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle. PLoS ONE, 2015, 10, e0118148.	2.5	11
22	Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 2014, 466, 2089-2099.	2.8	30
23	K+ Channels Expression in Hypertension After Arterial Injury, and Effect of Selective Kv1.3 Blockade with PAP-1 on Intimal Hyperplasia Formation. Cardiovascular Drugs and Therapy, 2014, 28, 501-511.	2.6	17
24	TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nature Communications, 2014, 5, 3125.	12.8	361
25	Downâ€regulation of Ca _V 1.2 channels during hypertension: how fewer Ca _V 1.2 channels allow more Ca ²⁺ into hypertensive arterial smooth muscle. Journal of Physiology, 2013, 591, 6175-6191.	2.9	29
26	Kv1.3 Channels Can Modulate Cell Proliferation During Phenotypic Switch by an Ion-Flux Independent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1299-1307.	2.4	68
27	High blood pressure associates with the remodelling of inward rectifier K ⁺ channels in mice mesenteric vascular smooth muscle cells. Journal of Physiology, 2012, 590, 6075-6091.	2.9	36
28	Characterization of Ion Channels Involved in the Proliferative Response of Femoral Artery Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1203-1211.	2.4	53
29	Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovascular Research, 2010, 86, 383-391.	3.8	24
30	<i>De novo</i> expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. Journal of Physiology, 2009, 587, 625-640.	2.9	45
31	Oxygen‣ensitive Potassium Channels in Chemoreceptor Cell Physiology. Annals of the New York Academy of Sciences, 2009, 1177, 82-88.	3.8	16
32	DPPX Modifies TEA Sensitivity of the Kv4 Channels in Rabbit Carotid Body Chemoreceptor Cells. Advances in Experimental Medicine and Biology, 2009, 648, 73-82.	1.6	0
33	A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels. Journal of General Physiology, 2008, 131, 455-471.	1.9	6
34	An ASIC Channel for Acid Chemotransduction. Circulation Research, 2007, 101, 965-967.	4.5	7
35	Oxygen sensitive Kν channels in the carotid body. Respiratory Physiology and Neurobiology, 2007, 157, 65-74.	1.6	32
36	Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1978-H1987.	3.2	45

M TERESA PEREZ-GARCIA

#	Article	IF	CITATIONS
37	Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body. Journal of Physiology, 2005, 566, 395-408.	2.9	39
38	Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. Journal of Physiology, 2005, 566, 491-503.	2.9	37
39	Contribution of Kv Channels to Phenotypic Remodeling of Human Uterine Artery Smooth Muscle Cells. Circulation Research, 2005, 97, 1280-1287.	4.5	57
40	Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. Journal of Physiology, 2004, 557, 457-471.	2.9	79
41	Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia. Journal of Physiology, 2004, 554, 126-144.	2.9	32
42	Functional Identification of Kvα Subunits Contributing to the O2-Sensitive K+ Current in Rabbit Carotid Body Chemoreceptor Cells. Advances in Experimental Medicine and Biology, 2003, 536, 33-39.	1.6	7
43	Molecular identification of Kvα subunits that contribute to the oxygenâ€sensitive K ⁺ current of chemoreceptor cells of the rabbit carotid body. Journal of Physiology, 2002, 542, 369-382.	2.9	76
44	O ₂ Modulates Large-Conductance Ca ²⁺ -Dependent K ⁺ Channels of Rat Chemoreceptor Cells by a Membrane-Restricted and CO-Sensitive Mechanism. Circulation Research, 2001, 89, 430-436.	4.5	148
45	Viral Gene Transfer of Dominant-Negative Kv4 Construct Suppresses an O ₂ -Sensitive K ⁺ Current in Chemoreceptor Cells. Journal of Neuroscience, 2000, 20, 5689-5695.	3.6	48
46	Are Kv Channels the Essence of O ₂ Sensing?. Circulation Research, 2000, 86, 490-491.	4.5	21
47	Kvβ1.2 Subunit Coexpression in HEK293 Cells Confers O2 Sensitivity to Kv4.2 but not to Shaker Channels. Journal of General Physiology, 1999, 113, 897-907.	1.9	150
48	Effects of Almitrine Bismesylate on the Ionic Currents of Chemoreceptor Cells from the Carotid Body. Molecular Pharmacology, 1998, 53, 330-339.	2.3	16
49	Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia Journal of Physiology, 1997, 499, 429-441.	2.9	76
50	Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification. Biophysical Journal, 1997, 72, 989-996.	0.5	43
51	Mechanisms of alpha2-adrenoceptor-mediated inhibition in rabbit carotid body. American Journal of Physiology - Cell Physiology, 1997, 272, C628-C637.	4.6	29
52	Depth Asymmetries of the Pore-Lining Segments of the Na+ Channel Revealed by Cysteine Mutagenesis. Neuron, 1996, 16, 1037-1047.	8.1	109
53	Structure of the sodium channel pore revealed by serial cysteine mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 300-304.	7.1	111
54	External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels Journal of Physiology, 1996, 494, 431-442.	2.9	123

#	Article	IF	CITATIONS
55	Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels Journal of Physiology, 1996, 491, 51-59.	2.9	65
56	Enhancement of ionic current and charge movement by coexpression of calcium channel beta 1A subunit with alpha 1C subunit in a human embryonic kidney cell line Journal of Physiology, 1996, 492, 89-96.	2.9	78
57	Functional properties of cardiac L-type calcium channels transiently expressed in HEK293 cells. Roles of alpha 1 and beta subunits Journal of General Physiology, 1995, 105, 289-305.	1.9	77
58	Functional association of the beta 1 subunit with human cardiac (hH1) and rat skeletal muscle (mu 1) sodium channel alpha subunits expressed in Xenopus oocytes Journal of General Physiology, 1995, 106, 1171-1191.	1.9	134
59	Cellular mechanisms of oxygen chemoreception in the carotid body. Respiration Physiology, 1995, 102, 137-147.	2.7	45
60	A mutation in the pore of the sodium channel alters gating. Biophysical Journal, 1995, 68, 1814-1827.	0.5	77
61	Neurotransmitters and Second Messenger Systems in the Carotid Body. Advances in Experimental Medicine and Biology, 1993, 337, 279-287.	1.6	7
62	Characterization of cultured chemoreceptor cells dissociated from adult rabbit carotid body. American Journal of Physiology - Cell Physiology, 1992, 263, C1152-C1159.	4.6	41
63	Presence of D1 receptors in the rabbit carotid body. Neuroscience Letters, 1991, 132, 259-262.	2.1	61
64	Cyclic AMP Modulates Differentially the Release of Dopamine Induced by Hypoxia and Other Stimuli and Increases Dopamine Synthesis in the Rabbit Carotid Body. Journal of Neurochemistry, 1991, 57, 1992-2000.	3.9	42
65	Effects of Different Types of Stimulation on Cyclic AMP Content in the Rabbit Carotid Body: Functional Significance. Journal of Neurochemistry, 1990, 55, 1287-1293.	3.9	60