Stephen H White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hydrophilic microenvironment in the substrate-translocating groove of the YidC membrane insertase is essential for enzyme function. Journal of Biological Chemistry, 2022, 298, 101690.	3.4	9
2	Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. Journal of Molecular Biology, 2022, 434, 167607.	4.2	6
3	Binding of SecA ATPase monomers and dimers to lipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183112.	2.6	8
4	The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183358.	2.6	10
5	Dropping Out and Other Fates of Transmembrane Segments Inserted by the SecA ATPase. Journal of Molecular Biology, 2019, 431, 2006-2019.	4.2	2
6	Stabilization of SecA ATPase by the primary cytoplasmic salt of <i>Escherichia coli</i> . Protein Science, 2019, 28, 984-989.	7.6	7
7	Structural Relaxation Processes and Collective Dynamics of Water in Biomolecular Environments. Journal of Physical Chemistry B, 2019, 123, 480-486.	2.6	14
8	Computed Free Energies of Peptide Insertion into Bilayers are Independent of Computational Method. Journal of Membrane Biology, 2018, 251, 345-356.	2.1	22
9	The importance of the membrane interface as the reference state for membrane protein stability. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2539-2548.	2.6	13
10	Transmembrane helices containing a charged arginine are thermodynamically stable. European Biophysics Journal, 2017, 46, 627-637.	2.2	21
11	YidC Insertase of Escherichia coli: Water Accessibility and Membrane Shaping. Structure, 2017, 25, 1403-1414.e3.	3.3	50
12	Determination of the Structure of Fluid Lipid Bilayer Membranes. , 2017, , 1-19.		3
13	Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 354-362.	2.6	29
14	Anomalous behavior of water inside the SecY translocon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9016-9021.	7.1	41
15	SecA Drives Transmembrane Insertion of RodZ, an Unusual Single-Span Membrane Protein. Journal of Molecular Biology, 2015, 427, 1023-1037.	4.2	28
16	Mechanisms of Integral Membrane Protein Insertion and Folding. Journal of Molecular Biology, 2015, 427, 999-1022.	4.2	292
17	The messy process of guiding proteins into membranes. ELife, 2015, 4, .	6.0	2
18	Structural interactions of a voltage sensor toxin with lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5463-70.	7.1	52

#	Article	IF	CITATIONS
19	Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nature Communications, 2014, 5, 4863.	12.8	91
20	Galactoside-Binding Site in LacY. Biochemistry, 2014, 53, 1536-1543.	2.5	11
21	Topology, Dimerization, and Stability of the Single-Span Membrane Protein CadC. Journal of Molecular Biology, 2014, 426, 2942-2957.	4.2	22
22	Copper-transporting P-type ATPases use a unique ion-release pathway. Nature Structural and Molecular Biology, 2014, 21, 43-48.	8.2	98
23	Conformational States of Melittin at a Bilayer Interface. Biophysical Journal, 2013, 104, L12-L14.	0.5	48
24	Charge Composition Features of Model Single-span Membrane Proteins That Determine Selection of YidC and SecYEG Translocase Pathways in Escherichia coli. Journal of Biological Chemistry, 2013, 288, 7704-7716.	3.4	32
25	Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics. Journal of Membrane Biology, 2012, 245, 717-730.	2.1	30
26	Hydrogen-bond energetics drive helix formation in membrane interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 178-182.	2.6	50
27	Water wires in atomistic models of the Hv1 proton channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 286-293.	2.6	67
28	Hydrogen bond dynamics in membrane protein function. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 942-950.	2.6	69
29	Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1726-1736.	2.6	18
30	Assembly and stability of \hat{l} -helical membrane proteins. Soft Matter, 2012, 8, 7742.	2.7	28
31	Microscopic Origin of Gating Current Fluctuations in a Potassium Channel Voltage Sensor. Biophysical Journal, 2012, 102, L44-L46.	0.5	28
32	Proton-Coupled Dynamics in Lactose Permease. Structure, 2012, 20, 1893-1904.	3.3	53
33	Microscopic Origin of Gating Current Fluctuations in a Potassium Channel Voltage Sensor. Biophysical Journal, 2012, 102, 686a.	0.5	0
34	Structural Dynamics of the S4 Voltage-Sensor Helix in Lipid Bilayers Lacking Phosphate Groups. Journal of Physical Chemistry B, 2011, 115, 8732-8738.	2.6	18
35	Acyl-Chain Methyl Distributions of Liquid-Ordered and -Disordered Membranes. Biophysical Journal, 2011, 100, 1455-1462.	0.5	70
36	In Silico Partitioning and Transmembrane Insertion of Hydrophobic Peptides under Equilibrium Conditions. Journal of the American Chemical Society, 2011, 133, 15487-15495.	13.7	92

#	Article	IF	CITATIONS
37	Membrane Partitioning: "Classical―and "Nonclassical―Hydrophobic Effects. Journal of Membrane Biology, 2011, 239, 5-14.	2.1	57
38	Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR. Journal of Membrane Biology, 2011, 239, 63-71.	2.1	34
39	Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments. Journal of Membrane Biology, 2011, 239, 35-48.	2.1	104
40	Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E359-E364.	7.1	52
41	CD Spectroscopy of Peptides and Proteins Bound to Large Unilamellar Vesicles. Journal of Membrane Biology, 2010, 236, 247-253.	2.1	72
42	Dynamics of SecY Translocons with Translocation-Defective Mutations. Structure, 2010, 18, 847-857.	3.3	47
43	Down-State Model of the Voltage-Sensing Domain of a Potassium Channel. Biophysical Journal, 2010, 98, 2857-2866.	0.5	33
44	Insertion of short transmembrane helices by the Sec61 translocon. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11588-11593.	7.1	76
45	Rhomboid Protease Dynamics and Lipid Interactions. Structure, 2009, 17, 395-405.	3.3	101
46	MPEx: A tool for exploring membrane proteins. Protein Science, 2009, 18, 2624-2628.	7.6	238
47	Biophysical dissection of membrane proteins. Nature, 2009, 459, 344-346.	27.8	250
48	Structure and hydration of membranes embedded with voltage-sensing domains. Nature, 2009, 462, 473-479.	27.8	175
49	pH Dependence of Sphingosine Aggregation. Biophysical Journal, 2009, 96, 2727-2733.	0.5	43
50	A Novel Fluorescent Probe That Senses the Physical State of Lipid Bilayers. Biophysical Journal, 2009, 96, 4631-4641.	0.5	18
51	Aggregation Behavior of an Ultra-Pure Lipopolysaccharide that Stimulates TLR-4 Receptors. Biophysical Journal, 2008, 95, 986-993.	0.5	61
52	How Translocons Select Transmembrane Helices. Annual Review of Biophysics, 2008, 37, 23-42.	10.0	176
53	Selective approach to use of upper gastroesophageal imaging study after laparoscopic Roux-en-Y gastric bypass. Surgery for Obesity and Related Diseases, 2008, 4, 122-125.	1.2	36
54	Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N _{in} –C _{out} and N _{out} –C _{in} transmembrane helices. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15702-15707.	7.1	69

#	Article	IF	CITATIONS
55	Membrane Protein Insertion: The Biology–Physics Nexus. Journal of General Physiology, 2007, 129, 363-369.	1.9	63
56	Crowds of Syntaxins. Science, 2007, 317, 1045-1046.	12.6	5
57	Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity. Journal of Molecular Biology, 2007, 370, 459-470.	4.2	149
58	Self-Induced Docking Site of a Deeply Embedded Peripheral Membrane Protein. Biophysical Journal, 2007, 92, 517-524.	0.5	53
59	Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 2007, 450, 1026-1030.	27.8	644
60	Hydration of POPC bilayers studied by 1H-PFG-MAS-NOESY and neutron diffraction. European Biophysics Journal, 2007, 36, 281-291.	2.2	80
61	Transloconâ€Assisted Folding of Membrane Proteins: New Insights into Lipidâ€Protein Interactions. FASEB Journal, 2007, 21, A208.	0.5	0
62	Membrane Protein Insertion: The Biology–Physics Nexus. Journal of Cell Biology, 2007, 177, i11-i11.	5.2	0
63	Diffraction-Based Density Restraints for Membrane and Membrane-Peptide Molecular Dynamics Simulations. Biophysical Journal, 2006, 91, 3617-3629.	0.5	17
64	A Voltage-Sensor Water Pore. Biophysical Journal, 2006, 91, L90-L92.	0.5	89
65	Investigation of Finite System-Size Effects in Molecular Dynamics Simulations of Lipid Bilayers. Journal of Physical Chemistry B, 2006, 110, 24157-24164.	2.6	48
66	Lipid Bilayers, Translocons and the Shaping of Polypeptide Structure. , 2006, , 1-25.		1
67	Rhomboid intramembrane protease structures galore!. Nature Structural and Molecular Biology, 2006, 13, 1049-1051.	8.2	12
68	Asn―and Aspâ€mediated interactions between transmembrane helices during transloconâ€mediated membrane protein assembly. EMBO Reports, 2006, 7, 1111-1116.	4.5	65
69	Membrane proteins — pumping along [Current Opinion in Structural Biology 2005, 15:375–377]. Current Opinion in Structural Biology, 2006, 16, 137.	5.7	0
70	AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences. Review of Scientific Instruments, 2006, 77, 074301.	1.3	131
71	A comprehensive classification system for lipids. Journal of Lipid Research, 2005, 46, 839-861.	4.2	1,348
72	Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature, 2005, 433, 377-381.	27.8	888

#	Article	IF	CITATIONS
73	Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology, 2005, 15, 378-386.	5.7	122
74	Membrane proteins — pumping along. Current Opinion in Structural Biology, 2005, 15, 375-377.	5.7	1
75	A comprehensive classification system for lipids. European Journal of Lipid Science and Technology, 2005, 107, 337-364.	1.5	94
76	How Hydrogen Bonds Shape Membrane Protein Structure. Advances in Protein Chemistry, 2005, 72, 157-172.	4.4	41
77	Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15059-15064.	7.1	208
78	Experimental Validation of Molecular Dynamics Simulations of Lipid Bilayers: A New Approach. Biophysical Journal, 2005, 88, 805-817.	0.5	161
79	An Experiment-Based Algorithm for Predicting the Partitioning of Unfolded Peptides into Phosphatidylcholine Bilayer Interfacesâ€. Biochemistry, 2005, 44, 12614-12619.	2.5	47
80	Membrane Insertion of a Potassium-Channel Voltage Sensor. Science, 2005, 307, 1427-1427.	12.6	171
81	The machinery of membrane protein assembly. Current Opinion in Structural Biology, 2004, 14, 397-404.	5.7	121
82	The progress of membrane protein structure determination. Protein Science, 2004, 13, 1948-1949.	7.6	272
83	Interfacial Folding and Membrane Insertion of a Designed Helical Peptide. Biochemistry, 2004, 43, 5782-5791.	2.5	91
84	Reversible Refolding of the Diphtheria Toxin T-Domain on Lipid Membranesâ€. Biochemistry, 2004, 43, 7451-7458.	2.5	54
85	Reversible Unfolding of β-Sheets in Membranes: A Calorimetric Study. Journal of Molecular Biology, 2004, 342, 703-711.	4.2	33
86	Translocons, thermodynamics, and the folding of membrane proteins. FEBS Letters, 2003, 555, 116-121.	2.8	52
87	Determining the Membrane Topology of Proteins:  Insertion Pathway of a Transmembrane Helix of Annexin 12. Biochemistry, 2002, 41, 13617-13626.	2.5	44
88	Protein Chemistry at Membrane Interfaces: Non-additivity of Electrostatic and Hydrophobic Interactions. Journal of Molecular Biology, 2001, 309, 543-552.	4.2	112
89	Energetics, stability, and prediction of transmembrane helices11Edited by G. von Heijne. Journal of Molecular Biology, 2001, 312, 927-934.	4.2	229
90	Alphas and Taus of Tryptophan Fluorescence in Membranes. Biophysical Journal, 2001, 81, 1825-1827.	0.5	20

#	Article	IF	CITATIONS
91	Structure, Location, and Lipid Perturbations of Melittin at the Membrane Interface. Biophysical Journal, 2001, 80, 801-811.	0.5	264
92	â€~Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 253-260.	2.6	217
93	MPtopo: A database of membrane protein topology. Protein Science, 2001, 10, 455-458.	7.6	163
94	How Membranes Shape Protein Structure. Journal of Biological Chemistry, 2001, 276, 32395-32398.	3.4	273
95	Peptides in Lipid Bilayers: Determination of Location by Absolute-Scale X-ray Refinement. , 2001, , 189-206.		2
96	How to Measure and Analyze Tryptophan Fluorescence in Membranes Properly, and Why Bother?. Analytical Biochemistry, 2000, 285, 235-245.	2.4	415
97	Formation and Characterization of a Single Trp-Trp Cross-link in Indolicidin That Confers Protease Stability without Altering Antimicrobial Activity. Journal of Biological Chemistry, 2000, 275, 12017-12022.	3.4	34
98	Designing Transmembrane α-Helices That Insert Spontaneouslyâ€. Biochemistry, 2000, 39, 4432-4442.	2.5	137
99	Determining the Membrane Topology of Peptides by Fluorescence Quenching. Biochemistry, 2000, 39, 161-170.	2.5	80
100	MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles. Annual Review of Biophysics and Biomolecular Structure, 1999, 28, 319-365.	18.3	1,595
101	CD Spectra of Indolicidin Antimicrobial Peptides Suggest Turns, Not Polyproline Helixâ€. Biochemistry, 1999, 38, 12313-12319.	2.5	134
102	Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin 1 1Edited by D. Rees. Journal of Molecular Biology, 1999, 285, 1363-1369.	4.2	309
103	An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 290, 99-117.	4.2	196
104	Hydrophobic interactions of peptides with membrane interfaces. BBA - Biomembranes, 1998, 1376, 339-352.	8.0	482
105	[4] Protein folding in membranes: Determining energetics of peptide-bilayer interactions. Methods in Enzymology, 1998, 295, 62-87.	1.0	233
106	Folding of Î ² -sheet membrane proteins: a hydrophobic hexapeptide model. Journal of Molecular Biology, 1998, 277, 1091-1110.	4.2	195
107	Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the Double-Bonds: Effect of Hydration. Biophysical Journal, 1998, 74, 2419-2433.	0.5	159
108	The Preference of Tryptophan for Membrane Interfacesâ€. Biochemistry, 1998, 37, 14713-14718.	2.5	899

#	Article	IF	CITATIONS
109	Critical Role of Lipid Composition in Membrane Permeabilization by Rabbit Neutrophil Defensins. Journal of Biological Chemistry, 1997, 272, 24224-24233.	3.4	135
110	Bilayer Interactions of Indolicidin, a Small Antimicrobial Peptide Rich in Tryptophan, Proline, and Basic Amino Acids. Biophysical Journal, 1997, 72, 794-805.	0.5	157
111	[23] Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods in Enzymology, 1997, 278, 474-486.	1.0	56
112	Membrane proteins Structure, assembly, and function: a panoply of progress. Current Opinion in Structural Biology, 1997, 7, 533-536.	5.7	6
113	Solvation Energies of Amino Acid Side Chains and Backbone in a Family of Hostâ ^{~,} Guest Pentapeptides. Biochemistry, 1996, 35, 5109-5124.	2.5	534
114	Interactions of Monomeric Rabbit Neutrophil Defensins with Bilayers:Â Comparison with Dimeric Human Defensin HNP-2â€. Biochemistry, 1996, 35, 11888-11894.	2.5	88
115	Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Structural and Molecular Biology, 1996, 3, 842-848.	8.2	1,525
116	The Liquid-Crystallographic Structure of Fluid Lipid Bilayer Membranes. , 1996, , 127-144.		23
117	Structure, function, and membrane integration of defensins. Current Opinion in Structural Biology, 1995, 5, 521-527.	5.7	392
118	The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences. Journal of Molecular Evolution, 1994, 38, 383-394.	1.8	24
119	Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Science, 1994, 3, 1362-1373.	7.6	349
120	Electronic publishing: <i>Protein science</i> at the edge of a revolution. Protein Science, 1994, 3, 1899-1900.	7.6	0
121	Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding. Current Opinion in Structural Biology, 1994, 4, 79-86.	5.7	182
122	Hydropathy Plots and the Prediction of Membrane Protein Topology. , 1994, , 97-124.		16
123	<i>Protein science</i> and the age of information. Protein Science, 1993, 2, 303-304.	7.6	0
124	The evolution of proteins from random amino acid sequences. I. Evidence from the lengthwise distribution of amino acids in modern protein sequences. Journal of Molecular Evolution, 1993, 36, 79-95.	1.8	47
125	Partitioning of tryptophan side-chain analogs between water and cyclohexane. [Erratum to document cited in CA118(1):7358m]. Biochemistry, 1993, 32, 9262-9262.	2.5	5
126	Membrane partitioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry, 1993, 32, 6307-6312.	2.5	209

8

#	Article	lF	CITATIONS
127	Appreciation. Jane S. Richardson. Biophysical Journal, 1992, 63, 1185.	0.5	81
128	Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophysical Journal, 1992, 61, 434-447.	0.5	644
129	Partitioning of tryptophan side-chain analogs between water and cyclohexane. Biochemistry, 1992, 31, 12813-12818.	2.5	51
130	Amino acid preferences of small proteins. Journal of Molecular Biology, 1992, 227, 991-995.	4.2	51
131	Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analog of dioleoylphosphatidylcholine. Biochemistry, 1991, 30, 6997-7008.	2.5	72
132	Membrane Structures in Normal and Essential Fatty Acid-Deficient Stratum Corneum: Characterization by Ruthenium Tetroxide Staining and X-Ray Diffraction. Journal of Investigative Dermatology, 1991, 96, 215-223.	0.7	284
133	Observations concerning topology and locations of helix ends of membrane proteins of known structure. Journal of Membrane Biology, 1990, 115, 145-158.	2.1	33
134	The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry, 1989, 28, 3421-3437.	2.5	480
135	Linear optimization of predictors for secondary structure. Journal of Molecular Biology, 1989, 210, 195-209.	4.2	16
136	Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An x-ray diffraction study. Biochemistry, 1988, 27, 3725-3732.	2.5	347
137	Lipid bilayer perturbations induced by simple hydrophobic peptides. Biochemistry, 1987, 26, 6127-6134.	2.5	35
138	Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface. Biochemistry, 1986, 25, 2605-2612.	2.5	59
139	Solubility of Volatile Hydrocarbons in Lipid Bilayers. , 1986, , 279-295.		1
140	The Physical Nature of Planar Bilayer Membranes. , 1986, , 3-35.		44
141	Hexane dissolved in dioleoyllecithin bilayers has a partial molar volume of approximately zero. Biochemistry, 1985, 24, 4637-4645.	2.5	55
142	Preparation of multilamellar vesicles of defined size-distribution by solvent-spherule evaporation. Biochimica Et Biophysica Acta - Biomembranes, 1985, 812, 793-801.	2.6	28
143	Behavior of hexane dissolved in dioleoylphosphatidylcholine bilayers: an NMR and calorimetric study. Journal of the American Chemical Society, 1984, 106, 6909-6912.	13.7	18
144	Behavior of hexane dissolved in dimyristoylphosphatidylcholine bilayers: an NMR and calorimetric study. Journal of the American Chemical Society, 1984, 106, 915-920.	13.7	30

#	Article	IF	CITATIONS
145	Orientational Waves in Cell Membranes. Molecular Crystals and Liquid Crystals, 1982, 88, 127-135.	0.8	6
146	Location of hexane in lipid bilayers determined by neutron diffraction. Nature, 1981, 290, 161-163.	27.8	143
147	The lipid bilayer as a â€~solvent' for small hydrophobic molecules. Nature, 1976, 262, 421-422.	27.8	53
148	High precision capacitance bridge for studying lipid bilayer membranes. Review of Scientific Instruments, 1975, 46, 1462-1466.	1.3	13
149	Temperature-dependent structural changes in planar bilayer membranes: Solvent "freeze-outâ€. Biochimica Et Biophysica Acta - Biomembranes, 1974, 356, 8-16.	2.6	51
150	The surface charge and double layers of thin lipid films formed from neutral lipids. Biochimica Et Biophysica Acta - Biomembranes, 1973, 323, 343-350.	2.6	41
151	Capacitance, area, and thickness variations in thin lipid films. Biochimica Et Biophysica Acta - Biomembranes, 1973, 323, 7-22.	2.6	130
152	The buffer value and transmembrane potential of escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 1972, 255, 780-785.	2.6	5
153	Analysis of the Torus Surrounding Planar Lipid Bilayer Membranes. Biophysical Journal, 1972, 12, 432-445.	0.5	106
154	A Study of Lipid Bilayer Membrane Stability Using Precise Measurements of Specific Capacitance. Biophysical Journal, 1970, 10, 1127-1148.	0.5	140