Jean-Paul Vincken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696336/publications.pdf Version: 2024-02-01

IEAN-DALLI VINCKEN

#	Article	IF	CITATIONS
1	Prenylated (iso)flavonoids as antifungal agents against the food spoiler Zygosaccharomyces parabailii. Food Control, 2022, 132, 108434.	5.5	14
2	Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chemistry, 2022, 370, 131292.	8.2	21
3	Design of Interactive Protocols that Help Students to Prepare for Laboratory Work. Journal of Chemical Education, 2022, 99, 612-618.	2.3	2
4	Facile Amidation of Non-Protected Hydroxycinnamic Acids for the Synthesis of Natural Phenol Amides. Molecules, 2022, 27, 2203.	3.8	8
5	A method to identify and quantify the complete peptide composition in protein hydrolysates. Analytica Chimica Acta, 2022, 1201, 339616.	5.4	11
6	Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. Journal of Functional Foods, 2022, 92, 105066.	3.4	2
7	Tea phenolics as prebiotics. Trends in Food Science and Technology, 2022, 127, 156-168.	15.1	12
8	Microbial Metabolism of Theaflavin-3,3′-digallate and Its Gut Microbiota Composition Modulatory Effects. Journal of Agricultural and Food Chemistry, 2021, 69, 232-245.	5.2	40
9	Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. Journal of Agricultural and Food Chemistry, 2021, 69, 2477-2484.	5.2	7
10	Toward a Systematic Nomenclature for (Neo)Lignanamides. Journal of Natural Products, 2021, 84, 956-963.	3.0	8
11	A comprehensive two-dimensional liquid chromatography method for the simultaneous separation of lipid species and their oxidation products. Journal of Chromatography A, 2021, 1644, 462106.	3.7	14
12	QSAR-based physicochemical properties of isothiocyanate antimicrobials against gram-negative and gram-positive bacteria. LWT - Food Science and Technology, 2021, 144, 111222.	5.2	8
13	Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Scientific Reports, 2021, 11, 14180.	3.3	19
14	A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Analytica Chimica Acta, 2021, 1180, 338874.	5.4	5
15	Removal of phenolic compounds from de-oiled sunflower kernels by aqueous ethanol washing. Food Chemistry, 2021, 362, 130204.	8.2	14
16	Facile enzymatic CÎ ³ -acylation of lignin model compounds. Catalysis Communications, 2020, 136, 105919.	3.3	5
17	A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis, 2020, 86, 103385.	3.9	55
18	The interplay between antimicrobial activity and reactivity of isothiocyanates. LWT - Food Science and Technology, 2020, 134, 109843.	5.2	7

#	Article	IF	CITATIONS
19	Controlling the Competition: Boosting Laccase/HBT-Catalyzed Cleavage of a β-O-4′ Linked Lignin Model. ACS Catalysis, 2020, 10, 8650-8659.	11.2	20
20	Browning of Epicatechin (EC) and Epigallocatechin (EGC) by Auto-Oxidation. Journal of Agricultural and Food Chemistry, 2020, 68, 13879-13887.	5.2	35
21	Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota <i>In Vitro</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 9804-9815.	5.2	56
22	Induction of promising antibacterial prenylated isoflavonoids from different subclasses by sequential elicitation of soybean. Phytochemistry, 2020, 179, 112496.	2.9	7
23	Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Scientific Reports, 2020, 10, 8288.	3.3	42
24	Reactivity of <i>p</i> -Coumaroyl Groups in Lignin upon Laccase and Laccase/HBT Treatments. ACS Sustainable Chemistry and Engineering, 2020, 8, 8723-8731.	6.7	12
25	Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation. Food Chemistry, 2020, 317, 126389.	8.2	8
26	Understanding laccase/HBT-catalyzed grass delignification at the molecular level. Green Chemistry, 2020, 22, 1735-1746.	9.0	26
27	Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography–Electron Spray Ionization–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 3121-3131.	5.2	18
28	Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends in Biotechnology, 2020, 38, 917-934.	9.3	43
29	Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation. Journal of Agricultural and Food Chemistry, 2019, 67, 12770-12779.	5.2	30
30	Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. Journal of Agricultural and Food Chemistry, 2019, 67, 13478-13486.	5.2	45
31	Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Scientific Reports, 2019, 9, 2967.	3.3	32
32	The impact of lignin sulfonation on its reactivity with laccase and laccase/HBT. Catalysis Science and Technology, 2019, 9, 1535-1542.	4.1	14
33	Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Research International, 2019, 121, 684-690.	6.2	34
34	Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry, 2019, 277, 682-690.	8.2	34
35	Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food and Bioprocess Technology, 2019, 12, 183-192.	4.7	64
36	Zeapyranolactone â^' A novel strigolactone from maize. Phytochemistry Letters, 2018, 24, 172-178.	1.2	36

#	Article	IF	CITATIONS
37	Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures. ACS Sustainable Chemistry and Engineering, 2018, 6, 2037-2046.	6.7	126
38	<scp><i>Laminaria digitata</i></scp> phlorotannins decrease protein degradation and methanogenesis during <i>in vitro</i> ruminal fermentation. Journal of the Science of Food and Agriculture, 2018, 98, 3644-3650.	3.5	18
39	Rapid membrane permeabilization of Listeria monocytogenes and Escherichia coli induced by antibacterial prenylated phenolic compounds from legumes. Food Chemistry, 2018, 240, 147-155.	8.2	45
40	QSAR of 1,4-benzoxazin-3-one antimicrobials and their drug design perspectives. Bioorganic and Medicinal Chemistry, 2018, 26, 6105-6114.	3.0	9
41	Antibacterial prenylated stilbenoids from peanut (Arachis hypogaea). Phytochemistry Letters, 2018, 28, 13-18.	1.2	22
42	Green and Black Tea Phenolics: Bioavailability, Transformation by Colonic Microbiota, and Modulation of Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 8469-8477.	5.2	89
43	Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry, 2018, 155, 233-243.	2.9	54
44	QSAR-based molecular signatures of prenylated (iso)flavonoids underlying antimicrobial potency against and membrane-disruption in Gram positive and Gram negative bacteria. Scientific Reports, 2018, 8, 9267.	3.3	56
45	The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chemistry, 2017, 226, 193-201.	8.2	46
46	Zealactones. Novel natural strigolactones from maize. Phytochemistry, 2017, 137, 123-131.	2.9	98
47	Nitrogen-to-Protein Conversion Factors for Three Edible Insects: <i>Tenebrio molitor</i> , <i>Alphitobius diaperinus</i> , and <i>Hermetia illucens</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 2275-2278.	5.2	442
48	Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnology for Biofuels, 2017, 10, 121.	6.2	86
49	<i>N</i> -Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2. ACS Chemical Neuroscience, 2017, 8, 548-557.	3.5	28
50	Phlorotannin Composition of <i>Laminaria digitata</i> . Phytochemical Analysis, 2017, 28, 487-495.	2.4	41
51	Enzymatic Browning in Sugar Beet Leaves (<i>Beta vulgaris</i> L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation. Journal of Agricultural and Food Chemistry, 2017, 65, 4911-4920.	5.2	15
52	Resolubilization of Protein from Water-Insoluble Phlorotannin–Protein Complexes upon Acidification. Journal of Agricultural and Food Chemistry, 2017, 65, 9595-9602.	5.2	7
53	Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 2017, 217, 364-372.	8.2	91
54	Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PLoS ONE, 2017, 12, e0189685.	2.5	30

#	Article	IF	CITATIONS
55	A tandem CBM25 domain of α-amylase from Microbacterium aurum as potential tool for targeting proteins to starch granules during starch biosynthesis. BMC Biotechnology, 2017, 17, 86.	3.3	4
56	Structural basis for non-genuine phenolic acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase CloQ from the ABBA/PT-barrel superfamily. PLoS ONE, 2017, 12, e0174665.	2.5	12
57	Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea. Journal of Agricultural and Food Chemistry, 2016, 64, 6011-6023.	5.2	11
58	Variation in accumulation of isoflavonoids in Phaseoleae seedlings elicited by Rhizopus. Food Chemistry, 2016, 196, 694-701.	8.2	15
59	Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnology for Biofuels, 2016, 9, 186.	6.2	132
60	A tandem mass spectrometry method based on selected ions detects lowâ€abundance phenolics in black tea – theatridimensins as products of the oxidative cascade. Rapid Communications in Mass Spectrometry, 2016, 30, 1797-1805.	1.5	10
61	Mass Spectrometric Characterization of Benzoxazinoid Glycosides from <i>Rhizopus</i> -Elicited Wheat (<i>Triticum aestivum</i>) Seedlings. Journal of Agricultural and Food Chemistry, 2016, 64, 6267-6276.	5.2	27
62	Peroxidase Can Perform the Hydroxylation Step in the "Oxidative Cascade―during Oxidation of Tea Catechins. Journal of Agricultural and Food Chemistry, 2016, 64, 8002-8009.	5.2	30
63	Effect of Plant Age on the Quantity and Quality of Proteins Extracted from Sugar Beet (<i>Beta) Tj ETQq1 1 0.7</i>	7843 <u>14</u> rgE	BT /gyerlock 1
64	Altering the phenolics profile of a green tea leaves extract using exogenous oxidases. Food Chemistry, 2016, 196, 1197-1206.	8.2	32
65	Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. Phytochemistry, 2016, 122, 65-75.	2.9	25
66	Glyceollins and dehydroglyceollins isolated from soybean act as SERMs and ER subtype-selective phytoestrogens. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 53-63.	2.5	29
67	Fatty acids attached to all-trans-astaxanthin alter its cis–trans equilibrium, and consequently its stability, upon light-accelerated autoxidation. Food Chemistry, 2016, 194, 1108-1115.	8.2	31
68	Involvement of a Hydrophobic Pocket and Helixâ€11 in Determining the Modes of Action of Prenylated Flavonoids and Isoflavonoids in the Human Estrogen Receptor. ChemBioChem, 2015, 16, 2668-2677.	2.6	20
69	Prenylation and Backbone Structure of Flavonoids and Isoflavonoids from Licorice and Hop Influence Their Phase I and II Metabolism. Journal of Agricultural and Food Chemistry, 2015, 63, 10628-10640.	5.2	14
70	Modification of Prenylated Stilbenoids in Peanut (<i>Arachis hypogaea</i>) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back. Journal of Agricultural and Food Chemistry, 2015, 63, 9260-9268.	5.2	29
71	Preliminary UHPLC–PDA–ESI-MS screening of light-accelerated autoxidation products of the tetrapyrrole biliverdin. Food Chemistry, 2015, 173, 624-628.	8.2	10
72	Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. Journal of Applied Phycology, 2015, 27, 125-140.	2.8	56

#	Article	IF	CITATIONS
73	Snooker Structure-Based Pharmacophore Model Explains Differences in Agonist and Blocker Binding to Bitter Receptor hTAS2R39. PLoS ONE, 2015, 10, e0118200.	2.5	14
74	KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery. PLoS ONE, 2014, 9, e112387.	2.5	41
75	Identification, Quantification, and Sensory Characterization of Steviol Glycosides from Differently Processed <i>Stevia rebaudiana</i> Commercial Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 11797-11804.	5.2	47
76	Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 214-221.	5.2	27
77	Interaction of flavan-3-ol derivatives and different caseins is determined by more than proline content and number of proline repeats. Food Chemistry, 2014, 158, 408-416.	8.2	22
78	Structural Changes of 6a-Hydroxy-Pterocarpans Upon Heating Modulate Their Estrogenicity. Journal of Agricultural and Food Chemistry, 2014, 62, 10475-10484.	5.2	14
79	Analysis of Palmitoyl Apo-astaxanthinals, Apo-astaxanthinones, and their Epoxides by UHPLC-PDA-ESI-MS. Journal of Agricultural and Food Chemistry, 2014, 62, 10254-10263.	5.2	15
80	Expression of an amylosucrase gene in potato results in larger starch granules with novel properties. Planta, 2014, 240, 409-421.	3.2	14
81	Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae) Tj ETQq1 1 0.78	34314 rgBT /(Overlock 10 T
82	6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39. PLoS ONE, 2014, 9, e94451.	2.5	93
83	Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO. Journal of Applied Phycology, 2013, 25, 1421-1430.	2.8	32
84	Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chemistry, 2013, 141, 2418-2425.	8.2	83
85	Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chemistry, 2013, 139, 1087-1097.	8.2	39
86	Evaluation of the Bitter-Masking Potential of Food Proteins for EGCG by a Cell-Based Human Bitter Taste Receptor Assay and Binding Studies. Journal of Agricultural and Food Chemistry, 2013, 61, 10010-10017.	5.2	28
87	Bitter Taste Receptor Activation by Flavonoids and Isoflavonoids: Modeled Structural Requirements for Activation of hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry, 2013, 61, 10454-10466.	5.2	144
88	Modulation of Isoflavonoid Composition of <i>Rhizopus oryzae</i> Elicited Soybean (<i>Glycine) Tj ETQq0 0 8657-8667.</i>	0 rgBT /Over 5.2	lock 10 Tf 50 48
89	The antibrowning agent sulfite inactivates <i>AgaricusÂbisporus</i> tyrosinase through covalent modification of the copperâ€B site. FEBS Journal, 2013, 280, 6184-6195.	4.7	27
90	Expression of an engineered granuleâ€bound <i><scp>E</scp>scherichia coli</i> glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnology Journal, 2013, 11, 470-479.	8.3	17

#	Article	IF	CITATIONS
91	Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. Journal of Food Engineering, 2013, 117, 263-271.	5.2	56
92	Main Phenolic Compounds of the Melanin Biosynthesis Pathway in Bruising-Tolerant and Bruising-Sensitive Button Mushroom (Agaricus bisporus) Strains. Journal of Agricultural and Food Chemistry, 2013, 61, 8224-8231.	5.2	33
93	Quantitative Fate of Chlorogenic Acid during Enzymatic Browning of Potato Juice. Journal of Agricultural and Food Chemistry, 2013, 61, 1563-1572.	5.2	12
94	UHPLC/PDA–ESI/MS Analysis of the Main Berry and Leaf Flavonol Glycosides from Different Carpathian <i>Hippophaë rhamnoides</i> L. Varieties. Phytochemical Analysis, 2013, 24, 484-492.	2.4	66
95	Sodiation as a tool for enhancing the diagnostic value of MALDIâ€TOF/TOFâ€MS spectra of complex astaxanthin ester mixtures from <i>Haematococcus pluvialis</i> . Journal of Mass Spectrometry, 2013, 48, 862-874.	1.6	19
96	Efficacy of Food Proteins as Carriers for Flavonoids. Journal of Agricultural and Food Chemistry, 2012, 60, 4136-4143.	5.2	111
97	Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 3507-3514.	5.2	36
98	Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food and Function, 2012, 3, 810.	4.6	88
99	Identification and quantification of (dihydro) hydroxycinnamic acids and their conjugates in potato by UHPLC–DAD–ESI-MSn. Food Chemistry, 2012, 130, 730-738.	8.2	52
100	Increasing Soy Isoflavonoid Content and Diversity by Simultaneous Malting and Challenging by a Fungus to Modulate Estrogenicity. Journal of Agricultural and Food Chemistry, 2011, 59, 6748-6758.	5.2	58
101	New Insights into an Ancient Antibrowning Agent: Formation of Sulfophenolics in Sodium Hydrogen Sulfite-Treated Potato Extracts. Journal of Agricultural and Food Chemistry, 2011, 59, 10247-10255.	5.2	22
102	Soy Isoflavones and Other Isoflavonoids Activate the Human Bitter Taste Receptors hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry, 2011, 59, 11764-11771.	5.2	83
103	Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra). Analytical and Bioanalytical Chemistry, 2011, 401, 305-313.	3.7	43
104	Identification of prenylated pterocarpans and other isoflavonoids in <i>Rhizopus</i> spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 55-65.	1.5	55
105	The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. British Journal of Nutrition, 2011, 105, 1798-1807.	2.3	73
106	Procyanidin Dimers A1, A2, and B2 Are Absorbed without Conjugation or Methylation from the Small Intestine of Rats. Journal of Nutrition, 2009, 139, 1469-1473.	2.9	156
107	Selective Synthesis of Unsaturated N-Acylethanolamines by Lipase- Catalyzed N-Acylation of Ethanolamine with Unsaturated Fatty Acids. Letters in Organic Chemistry, 2009, 6, 444-447.	0.5	34
108	Interactions between membraneâ€bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 2009, 583, 978-982.	2.8	68

#	Article	IF	CITATIONS
109	A rapid screening method for prenylated flavonoids with ultraâ€highâ€performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Communications in Mass Spectrometry, 2009, 23, 3083-3093.	1.5	91
110	The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides. Phytochemistry, 2009, 70, 262-269.	2.9	54
111	Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR. Plant Physiology and Biochemistry, 2009, 47, 1116-1118.	5.8	10
112	Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chemistry, 2009, 117, 713-720.	8.2	56
113	Procyanidin Dimers Are Metabolized by Human Microbiota with 2-(3,4-Dihydroxyphenyl)acetic Acid and 5-(3,4-Dihydroxyphenyl)-γ-valerolactone as the Major Metabolites. Journal of Agricultural and Food Chemistry, 2009, 57, 1084-1092.	5.2	265
114	Combined Normal-Phase and Reversed-Phase Liquid Chromatography/ESI-MS as a Tool To Determine the Molecular Diversity of A-type Procyanidins in Peanut Skins. Journal of Agricultural and Food Chemistry, 2009, 57, 6007-6013.	5.2	43
115	Some Phenolic Compounds Increase the Nitric Oxide Level in Endothelial Cells in Vitro. Journal of Agricultural and Food Chemistry, 2009, 57, 7693-7699.	5.2	85
116	Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-α Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes. Journal of Agricultural and Food Chemistry, 2009, 57, 7274-7281.	5.2	53
117	C22 Isomerization in α-Tomatine-to-Esculeoside A Conversion during Tomato Ripening Is Driven by C27 Hydroxylation of Triterpenoidal Skeleton. Journal of Agricultural and Food Chemistry, 2009, 57, 3786-3791.	5.2	37
118	Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls. Phytochemistry, 2008, 69, 1250-1260.	2.9	47
119	Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds. Rapid Communications in Mass Spectrometry, 2008, 22, 3615-3623.	1.5	18
120	<i>Bifidobacterium</i> carbohydrasesâ€ŧheir role in breakdown and synthesis of (potential) prebiotics. Molecular Nutrition and Food Research, 2008, 52, 146-163.	3.3	151
121	Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Clycosides from Unripe Tomato Fruits. Journal of Agricultural and Food Chemistry, 2008, 56, 11432-11440.	5.2	29
122	Metabolism of the Lignan Macromolecule into Enterolignans in the Gastrointestinal Lumen As Determined in the Simulator of the Human Intestinal Microbial Ecosystem. Journal of Agricultural and Food Chemistry, 2008, 56, 4806-4812.	5.2	76
123	Peanut Allergen Ara h 1 Interacts with Proanthocyanidins into Higher Molecular Weight Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 8772-8778.	5.2	21
124	Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers, 2007, 69, 94-105.	10.2	190
125	Preparative chromatographic purification and surfactant properties of individual soyasaponins from soy hypocotyls. Food Chemistry, 2007, 101, 324-333.	8.2	37
126	Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 2007, 68, 275-297.	2.9	598

#	Article	IF	CITATIONS
127	The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls. Phytochemistry, 2007, 68, 1227-1235.	2.9	67
128	Expression of an engineered granule-bound Escherichia coli maltose acetyltransferase in wild-type and amf potato plants. Plant Biotechnology Journal, 2007, 5, 134-145.	8.3	11
129	Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Research, 2007, 16, 645-656.	2.4	27
130	Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. Journal of Plant Research, 2007, 120, 605-617.	2.4	27
131	Expression of alternansucrase in potato plants. Biotechnology Letters, 2007, 29, 1135-1142.	2.2	12
132	Accumulation of multiple-repeat starch-binding domains (SBD2–SBD5) does not reduce amylose content of potato starch granules. Planta, 2007, 225, 919-933.	3.2	18
133	Breeding for Improved and Novel Starch Characteristics in Potato. , 2007, , 405-408.		0
134	Technological Feasibility. , 2006, , 51-98.		0
135	Genetic Variation in Pea Seed Globulin Composition. Journal of Agricultural and Food Chemistry, 2006, 54, 425-433.	5.2	165
136	Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules. Progress in Natural Science: Materials International, 2006, 16, 1295-1299.	4.4	0
137	Increasing the transglycosylation activity of α-galactosidase fromBifidobacterium adolescentisDSM 20083 by site-directed mutagenesis. Biotechnology and Bioengineering, 2006, 93, 122-131.	3.3	36
138	Bitterness of saponins and their content in dry peas. Journal of the Science of Food and Agriculture, 2006, 86, 1225-1231.	3.5	108
139	Type I arabinogalactan contains β-d-Galp-(1→3)-β-d-Galp structural elements. Carbohydrate Research, 2005, 340, 2135-2143.	2.3	59
140	Mutan produced in potato amyloplasts adheres to starch granules. Plant Biotechnology Journal, 2005, 3, 341-351.	8.3	15
141	Production of dextran in transgenic potato plants. Transgenic Research, 2005, 14, 385-395.	2.4	17
142	Improved Cassava Starch by Antisense Inhibition of Granule-bound Starch Synthase I. Molecular Breeding, 2005, 16, 163-172.	2.1	58
143	In vivo Expression of a Cicer arietinum β-galactosidase in Potato Tubers Leads to a Reduction of the Galactan Side-chains in Cell Wall Pectin. Plant and Cell Physiology, 2005, 46, 1613-1622.	3.1	35
144	Bifidobacterium longum Endogalactanase Liberates Galactotriose from Type I Galactans. Applied and Environmental Microbiology, 2005, 71, 5501-5510.	3.1	51

#	Article	IF	CITATIONS
145	Glycosyl hydrolases from Bifidobacterium adolescentis DSM20083. An overview. Dairy Science and Technology, 2005, 85, 125-133.	0.9	8
146	Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnology Journal, 2004, 2, 251-260.	8.3	45
147	Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Phytochemistry, 2004, 65, 535-546.	2.9	39
148	Regeneration of Pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Reports, 2004, 23, 453-460.	5.6	20
149	β-Galactosidase from Bifidobacterium adolescentis DSM20083 prefers β(1,4)-galactosides over lactose. Applied Microbiology and Biotechnology, 2004, 66, 276-284.	3.6	59
150	Overexpression of two different potato UDP-Glc 4-epimerases can increase the galactose content of potato tuber cell walls. Plant Science, 2004, 166, 1097-1104.	3.6	22
151	Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Molecular Biology, 2003, 51, 789-801.	3.9	50
152	Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato. Plant Physiology and Biochemistry, 2003, 41, 965-971.	5.8	6
153	Towards a more versatile α-glucan biosynthesis in plants. Journal of Plant Physiology, 2003, 160, 765-777.	3.5	32
154	Pectin — the Hairy Thing. , 2003, , 47-59.		25
155	lf Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture. Plant Physiology, 2003, 132, 1781-1789.	4.8	527
156	Towards Unravelling the Biological Significance of the Individual Components of Pectic Hairy Regions in Plants. , 2003, , 15-34.		5
157	Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in Pea[W]. Plant Cell, 2002, 14, 1767-1785.	6.6	53
158	In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant Journal, 2002, 30, 403-413.	5.7	86
159	Enzymes Degrading Rhamnogalacturonan and Xylogalacturonan. , 2002, , .		0
160	A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochemical Journal, 2001, 355, 167-177.	3.7	56
161	Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydrate Research, 2001, 332, 285-297.	2.3	68
162	Purification and characterisation of a β-galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydrate Research, 2000, 329, 75-85.	2.3	23

Jean-Paul Vincken

#	Article	IF	CITATIONS
163	A universal assay for screening expression libraries for carbohydrases. Journal of Bioscience and Bioengineering, 2000, 89, 107-109.	2.2	22
164	Remodelling Pectin Structure In Potato. Developments in Plant Genetics and Breeding, 2000, 6, 245-256.	0.6	10
165	Expression of a cassava granuleâ€bound starch synthase gene in the amyloseâ€free potato only partially restores amylose content. Plant, Cell and Environment, 1999, 22, 1311-1318.	5.7	7
166	Xyloglucan endotransglycosylase activity in apples is ripening-related: implications for fruit juice processing. Journal of the Science of Food and Agriculture, 1998, 78, 46-52.	3.5	9
167	Amylose Is Synthesized in Vitro by Extension of and Cleavage from Amylopectin. Journal of Biological Chemistry, 1998, 273, 22232-22240.	3.4	125
168	Fungal and Plant Xyloglucanases May Act in Concert During Liquefaction of Apples. Journal of the Science of Food and Agriculture, 1997, 73, 407-416.	3.5	13
169	Pectin lyase is a key enzyme in the maceration of potato tuber. Journal of the Science of Food and Agriculture, 1997, 75, 167-172.	3.5	26
170	Substrate specificity of endoglucanases: what determines xyloglucanase activity?. Carbohydrate Research, 1997, 298, 299-310.	2.3	67
171	Action patterns and mapping of the substrate-binding regions of endo-(1 → 5)-α-l-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydrate Research, 1997, 303, 207-218.	2.3	24
172	Dimers of a GFG hexasaccharide occur in apple fruit xyloglucan. Carbohydrate Research, 1997, 305, 233-242.	2.3	7
173	Potato xyloglucan is built from XXGG-type subunits. Carbohydrate Research, 1996, 288, 219-232.	2.3	31