Jean-Paul Vincken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696336/publications.pdf

Version: 2024-02-01

41344 56724 8,558 173 49 83 citations h-index g-index papers 180 180 180 10458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 2007, 68, 275-297.	2.9	598
2	If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture. Plant Physiology, 2003, 132, 1781-1789.	4.8	527
3	Nitrogen-to-Protein Conversion Factors for Three Edible Insects: <i>Tenebrio molitor</i> , <i>Alphitobius diaperinus</i> , and <i>Hermetia illucens</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 2275-2278.	5.2	442
4	Procyanidin Dimers Are Metabolized by Human Microbiota with 2-(3,4-Dihydroxyphenyl)acetic Acid and 5-(3,4-Dihydroxyphenyl)-Î ³ -valerolactone as the Major Metabolites. Journal of Agricultural and Food Chemistry, 2009, 57, 1084-1092.	5.2	265
5	Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers, 2007, 69, 94-105.	10.2	190
6	Genetic Variation in Pea Seed Globulin Composition. Journal of Agricultural and Food Chemistry, 2006, 54, 425-433.	5.2	165
7	Procyanidin Dimers A1, A2, and B2 Are Absorbed without Conjugation or Methylation from the Small Intestine of Rats. Journal of Nutrition, 2009, 139, 1469-1473.	2.9	156
8	<i>Bifidobacterium</i> carbohydrasesâ€their role in breakdown and synthesis of (potential) prebiotics. Molecular Nutrition and Food Research, 2008, 52, 146-163.	3.3	151
9	Bitter Taste Receptor Activation by Flavonoids and Isoflavonoids: Modeled Structural Requirements for Activation of hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry, 2013, 61, 10454-10466.	5.2	144
10	Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnology for Biofuels, 2016, 9, 186.	6.2	132
11	Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures. ACS Sustainable Chemistry and Engineering, 2018, 6, 2037-2046.	6.7	126
12	Amylose Is Synthesized in Vitro by Extension of and Cleavage from Amylopectin. Journal of Biological Chemistry, 1998, 273, 22232-22240.	3.4	125
13	Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 <mark>Tf</mark> 122
14	Efficacy of Food Proteins as Carriers for Flavonoids. Journal of Agricultural and Food Chemistry, 2012, 60, 4136-4143.	5. 2	111
15	Bitterness of saponins and their content in dry peas. Journal of the Science of Food and Agriculture, 2006, 86, 1225-1231.	3.5	108
16	Zealactones. Novel natural strigolactones from maize. Phytochemistry, 2017, 137, 123-131.	2.9	98
17	6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39. PLoS ONE, 2014, 9, e94451.	2.5	93
18	A rapid screening method for prenylated flavonoids with ultraâ€highâ€performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Communications in Mass Spectrometry, 2009, 23, 3083-3093.	1.5	91

#	Article	IF	CITATIONS
19	Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 2017, 217, 364-372.	8.2	91
20	Green and Black Tea Phenolics: Bioavailability, Transformation by Colonic Microbiota, and Modulation of Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 8469-8477.	5.2	89
21	Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food and Function, 2012, 3, 810.	4.6	88
22	In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant Journal, 2002, 30, 403-413.	5.7	86
23	Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnology for Biofuels, 2017, 10, 121.	6.2	86
24	Some Phenolic Compounds Increase the Nitric Oxide Level in Endothelial Cells in Vitro. Journal of Agricultural and Food Chemistry, 2009, 57, 7693-7699.	5.2	85
25	Soy Isoflavones and Other Isoflavonoids Activate the Human Bitter Taste Receptors hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry, 2011, 59, 11764-11771.	5.2	83
26	Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chemistry, 2013, 141, 2418-2425.	8.2	83
27	Metabolism of the Lignan Macromolecule into Enterolignans in the Gastrointestinal Lumen As Determined in the Simulator of the Human Intestinal Microbial Ecosystem. Journal of Agricultural and Food Chemistry, 2008, 56, 4806-4812.	5. 2	76
28	The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. British Journal of Nutrition, 2011, 105, 1798-1807.	2.3	73
29	Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydrate Research, 2001, 332, 285-297.	2.3	68
30	Interactions between membraneâ€bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 2009, 583, 978-982.	2.8	68
31	Substrate specificity of endoglucanases: what determines xyloglucanase activity?. Carbohydrate Research, 1997, 298, 299-310.	2.3	67
32	The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls. Phytochemistry, 2007, 68, 1227-1235.	2.9	67
33	UHPLC/PDA–ESI/MS Analysis of the Main Berry and Leaf Flavonol Glycosides from Different Carpathian <i>Hippophaë rhamnoides</i> L. Varieties. Phytochemical Analysis, 2013, 24, 484-492.	2.4	66
34	Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food and Bioprocess Technology, 2019, 12, 183-192.	4.7	64
35	\hat{l}^2 -Galactosidase from Bifidobacterium adolescentis DSM20083 prefers $\hat{l}^2(1,4)$ -galactosides over lactose. Applied Microbiology and Biotechnology, 2004, 66, 276-284.	3.6	59
36	Type I arabinogalactan contains \hat{I}^2 -d-Galp- $(1\hat{a}\dagger^3)$ - \hat{I}^2 -d-Galp structural elements. Carbohydrate Research, 2005, 340, 2135-2143.	2.3	59

#	Article	IF	Citations
37	Improved Cassava Starch by Antisense Inhibition of Granule-bound Starch Synthase I. Molecular Breeding, 2005, 16, 163-172.	2.1	58
38	Increasing Soy Isoflavonoid Content and Diversity by Simultaneous Malting and Challenging by a Fungus to Modulate Estrogenicity. Journal of Agricultural and Food Chemistry, 2011, 59, 6748-6758.	5.2	58
39	A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochemical Journal, 2001, 355, 167-177.	3.7	56
40	Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chemistry, 2009, 117, 713-720.	8.2	56
41	Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. Journal of Food Engineering, 2013, 117, 263-271.	5.2	56
42	Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. Journal of Applied Phycology, 2015, 27, 125-140.	2.8	56
43	QSAR-based molecular signatures of prenylated (iso)flavonoids underlying antimicrobial potency against and membrane-disruption in Gram positive and Gram negative bacteria. Scientific Reports, 2018, 8, 9267.	3.3	56
44	Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota <i>In Vitro</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 9804-9815.	5.2	56
45	Identification of prenylated pterocarpans and other isoflavonoids in <i>Rhizopus</i> spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 55-65.	1.5	55
46	A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis, 2020, 86, 103385.	3.9	55
47	The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides. Phytochemistry, 2009, 70, 262-269.	2.9	54
48	Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry, 2018, 155, 233-243.	2.9	54
49	Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in Pea[W]. Plant Cell, 2002, 14, 1767-1785.	6.6	53
50	Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-α Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes. Journal of Agricultural and Food Chemistry, 2009, 57, 7274-7281.	5.2	53
51	Identification and quantification of (dihydro) hydroxycinnamic acids and their conjugates in potato by UHPLC–DAD–ESI-MSn. Food Chemistry, 2012, 130, 730-738.	8.2	52
52	Bifidobacterium longum Endogalactanase Liberates Galactotriose from Type I Galactans. Applied and Environmental Microbiology, 2005, 71, 5501-5510.	3.1	51
53	Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Molecular Biology, 2003, 51, 789-801.	3.9	50
54	Modulation of Isoflavonoid Composition of <i>Rhizopus oryzae</i> Elicited Soybean (<i>Glycine) Tj ETQq0 0 0 0 8657-8667.</i>	gBT /Over 5.2	lock 10 Tf 50 6 48

#	Article	IF	Citations
55	Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls. Phytochemistry, 2008, 69, 1250-1260.	2.9	47
56	Identification, Quantification, and Sensory Characterization of Steviol Glycosides from Differently Processed <i>Stevia rebaudiana</i> Commercial Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 11797-11804.	5.2	47
57	The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chemistry, 2017, 226, 193-201.	8.2	46
58	Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnology Journal, 2004, 2, 251-260.	8.3	45
59	Rapid membrane permeabilization of Listeria monocytogenes and Escherichia coli induced by antibacterial prenylated phenolic compounds from legumes. Food Chemistry, 2018, 240, 147-155.	8.2	45
60	Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. Journal of Agricultural and Food Chemistry, 2019, 67, 13478-13486.	5.2	45
61	Combined Normal-Phase and Reversed-Phase Liquid Chromatography/ESI-MS as a Tool To Determine the Molecular Diversity of A-type Procyanidins in Peanut Skins. Journal of Agricultural and Food Chemistry, 2009, 57, 6007-6013.	5.2	43
62	Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra). Analytical and Bioanalytical Chemistry, 2011, 401, 305-313.	3.7	43
63	Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends in Biotechnology, 2020, 38, 917-934.	9.3	43
64	Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Scientific Reports, 2020, 10, 8288.	3. 3	42
65	KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery. PLoS ONE, 2014, 9, e112387.	2.5	41
66	Phlorotannin Composition of <i>Laminaria digitata </i> . Phytochemical Analysis, 2017, 28, 487-495.	2.4	41
67	Microbial Metabolism of Theaflavin-3,3′-digallate and Its Gut Microbiota Composition Modulatory Effects. Journal of Agricultural and Food Chemistry, 2021, 69, 232-245.	5.2	40
68	Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Phytochemistry, 2004, 65, 535-546.	2.9	39
69	Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chemistry, 2013, 139, 1087-1097.	8.2	39
70	Preparative chromatographic purification and surfactant properties of individual soyasaponins from soy hypocotyls. Food Chemistry, 2007, 101, 324-333.	8.2	37
71	C22 Isomerization in α-Tomatine-to-Esculeoside A Conversion during Tomato Ripening Is Driven by C27 Hydroxylation of Triterpenoidal Skeleton. Journal of Agricultural and Food Chemistry, 2009, 57, 3786-3791.	5.2	37
72	Increasing the transglycosylation activity of α-galactosidase fromBifidobacterium adolescentisDSM 20083 by site-directed mutagenesis. Biotechnology and Bioengineering, 2006, 93, 122-131.	3.3	36

#	Article	IF	Citations
73	Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 3507-3514.	5.2	36
74	Zeapyranolactone â^' A novel strigolactone from maize. Phytochemistry Letters, 2018, 24, 172-178.	1.2	36
75	In vivo Expression of a Cicer arietinum \hat{l}^2 -galactosidase in Potato Tubers Leads to a Reduction of the Galactan Side-chains in Cell Wall Pectin. Plant and Cell Physiology, 2005, 46, 1613-1622.	3.1	35
76	Browning of Epicatechin (EC) and Epigallocatechin (EGC) by Auto-Oxidation. Journal of Agricultural and Food Chemistry, 2020, 68, 13879-13887.	5. 2	35
77	Selective Synthesis of Unsaturated N-Acylethanolamines by Lipase- Catalyzed N-Acylation of Ethanolamine with Unsaturated Fatty Acids. Letters in Organic Chemistry, 2009, 6, 444-447.	0.5	34
78	Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Research International, 2019, 121, 684-690.	6.2	34
79	Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry, 2019, 277, 682-690.	8.2	34
80	Main Phenolic Compounds of the Melanin Biosynthesis Pathway in Bruising-Tolerant and Bruising-Sensitive Button Mushroom (Agaricus bisporus) Strains. Journal of Agricultural and Food Chemistry, 2013, 61, 8224-8231.	5 . 2	33
81	Towards a more versatile α-glucan biosynthesis in plants. Journal of Plant Physiology, 2003, 160, 765-777.	3.5	32
82	Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO. Journal of Applied Phycology, 2013, 25, 1421-1430.	2.8	32
83	Effect of Plant Age on the Quantity and Quality of Proteins Extracted from Sugar Beet (<i>Beta) Tj ETQq1 1 0.78</i>	343 <u>14</u> rgB	T /gyerlock 1
84	Altering the phenolics profile of a green tea leaves extract using exogenous oxidases. Food Chemistry, 2016, 196, 1197-1206.	8.2	32
85	Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Scientific Reports, 2019, 9, 2967.	3.3	32
86	Potato xyloglucan is built from XXGG-type subunits. Carbohydrate Research, 1996, 288, 219-232.	2.3	31
87	Fatty acids attached to all-trans-astaxanthin alter its cis–trans equilibrium, and consequently its stability, upon light-accelerated autoxidation. Food Chemistry, 2016, 194, 1108-1115.	8.2	31
88	Peroxidase Can Perform the Hydroxylation Step in the "Oxidative Cascade―during Oxidation of Tea Catechins. Journal of Agricultural and Food Chemistry, 2016, 64, 8002-8009.	5 . 2	30
89	Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PLoS ONE, 2017, 12, e0189685.	2.5	30
90	Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation. Journal of Agricultural and Food Chemistry, 2019, 67, 12770-12779.	5 . 2	30

#	Article	IF	CITATIONS
91	Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Glycosides from Unripe Tomato Fruits. Journal of Agricultural and Food Chemistry, 2008, 56, 11432-11440.	5.2	29
92	Modification of Prenylated Stilbenoids in Peanut (<i>Arachis hypogaea</i>) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back. Journal of Agricultural and Food Chemistry, 2015, 63, 9260-9268.	5.2	29
93	Glyceollins and dehydroglyceollins isolated from soybean act as SERMs and ER subtype-selective phytoestrogens. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 53-63.	2.5	29
94	Evaluation of the Bitter-Masking Potential of Food Proteins for EGCG by a Cell-Based Human Bitter Taste Receptor Assay and Binding Studies. Journal of Agricultural and Food Chemistry, 2013, 61, 10010-10017.	5.2	28
95	<i>N</i> -Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2. ACS Chemical Neuroscience, 2017, 8, 548-557.	3.5	28
96	Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Research, 2007, 16 , $645-656$.	2.4	27
97	Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. Journal of Plant Research, 2007, 120, 605-617.	2.4	27
98	The antibrowning agent sulfite inactivates <i>AgaricusÂbisporus</i> tyrosinase through covalent modification of the copperâ€B site. FEBS Journal, 2013, 280, 6184-6195.	4.7	27
99	Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 214-221.	5.2	27
100	Mass Spectrometric Characterization of Benzoxazinoid Glycosides from <i>Rhizopus</i> -Elicited Wheat (<i>Triticum aestivum</i>) Seedlings. Journal of Agricultural and Food Chemistry, 2016, 64, 6267-6276.	5.2	27
101	Pectin lyase is a key enzyme in the maceration of potato tuber. Journal of the Science of Food and Agriculture, 1997, 75, 167-172.	3.5	26
102	Understanding laccase/HBT-catalyzed grass delignification at the molecular level. Green Chemistry, 2020, 22, 1735-1746.	9.0	26
103	Pectin — the Hairy Thing. , 2003, , 47-59.		25
104	Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. Phytochemistry, 2016, 122, 65-75.	2.9	25
105	Action patterns and mapping of the substrate-binding regions of endo-(1 → 5)-α-l-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydrate Research, 1997, 303, 207-218.	2.3	24
106	Purification and characterisation of a \hat{l}^2 -galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydrate Research, 2000, 329, 75-85.	2.3	23
107	A universal assay for screening expression libraries for carbohydrases. Journal of Bioscience and Bioengineering, 2000, 89, 107-109.	2.2	22
108	Overexpression of two different potato UDP-Glc 4-epimerases can increase the galactose content of potato tuber cell walls. Plant Science, 2004, 166, 1097-1104.	3.6	22

#	Article	IF	CITATIONS
109	New Insights into an Ancient Antibrowning Agent: Formation of Sulfophenolics in Sodium Hydrogen Sulfite-Treated Potato Extracts. Journal of Agricultural and Food Chemistry, 2011, 59, 10247-10255.	5.2	22
110	Interaction of flavan-3-ol derivatives and different caseins is determined by more than proline content and number of proline repeats. Food Chemistry, 2014, 158, 408-416.	8.2	22
111	Antibacterial prenylated stilbenoids from peanut (Arachis hypogaea). Phytochemistry Letters, 2018, 28, 13-18.	1.2	22
112	Peanut Allergen Ara h 1 Interacts with Proanthocyanidins into Higher Molecular Weight Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 8772-8778.	5.2	21
113	Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chemistry, 2022, 370, 131292.	8.2	21
114	Regeneration of Pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Reports, 2004, 23, 453-460.	5.6	20
115	Involvement of a Hydrophobic Pocket and Helixâ€11 in Determining the Modes of Action of Prenylated Flavonoids and Isoflavonoids in the Human Estrogen Receptor. ChemBioChem, 2015, 16, 2668-2677.	2.6	20
116	Controlling the Competition: Boosting Laccase/HBT-Catalyzed Cleavage of a β-O-4′ Linked Lignin Model. ACS Catalysis, 2020, 10, 8650-8659.	11.2	20
117	Sodiation as a tool for enhancing the diagnostic value of MALDIâ€TOF/TOFâ€MS spectra of complex astaxanthin ester mixtures from <i>Haematococcus pluvialis</i> Journal of Mass Spectrometry, 2013, 48, 862-874.	1.6	19
118	Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Scientific Reports, 2021, 11, 14180.	3.3	19
119	Accumulation of multiple-repeat starch-binding domains (SBD2–SBD5) does not reduce amylose content of potato starch granules. Planta, 2007, 225, 919-933.	3.2	18
120	Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds. Rapid Communications in Mass Spectrometry, 2008, 22, 3615-3623.	1.5	18
121	<scp><i>Laminaria digitata</i></scp> phlorotannins decrease protein degradation and methanogenesis during <i>in vitro</i> ruminal fermentation. Journal of the Science of Food and Agriculture, 2018, 98, 3644-3650.	3.5	18
122	Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography–Electron Spray Ionization–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 3121-3131.	5.2	18
123	Production of dextran in transgenic potato plants. Transgenic Research, 2005, 14, 385-395.	2.4	17
124	Expression of an engineered granuleâ€bound <i><scp>E</scp>scherichia coli</i> glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnology Journal, 2013, 11, 470-479.	8.3	17
125	Mutan produced in potato amyloplasts adheres to starch granules. Plant Biotechnology Journal, 2005, 3, 341-351.	8.3	15
126	Analysis of Palmitoyl Apo-astaxanthinals, Apo-astaxanthinones, and their Epoxides by UHPLC-PDA-ESI-MS. Journal of Agricultural and Food Chemistry, 2014, 62, 10254-10263.	5.2	15

#	Article	IF	Citations
127	Variation in accumulation of isoflavonoids in Phaseoleae seedlings elicited by Rhizopus. Food Chemistry, 2016, 196, 694-701.	8.2	15
128	Enzymatic Browning in Sugar Beet Leaves (<i>Beta vulgaris</i> L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation. Journal of Agricultural and Food Chemistry, 2017, 65, 4911-4920.	5. 2	15
129	Structural Changes of 6a-Hydroxy-Pterocarpans Upon Heating Modulate Their Estrogenicity. Journal of Agricultural and Food Chemistry, 2014, 62, 10475-10484.	5.2	14
130	Expression of an amylosucrase gene in potato results in larger starch granules with novel properties. Planta, 2014, 240, 409-421.	3.2	14
131	Prenylation and Backbone Structure of Flavonoids and Isoflavonoids from Licorice and Hop Influence Their Phase I and II Metabolism. Journal of Agricultural and Food Chemistry, 2015, 63, 10628-10640.	5.2	14
132	The impact of lignin sulfonation on its reactivity with laccase and laccase/HBT. Catalysis Science and Technology, 2019, 9, 1535-1542.	4.1	14
133	A comprehensive two-dimensional liquid chromatography method for the simultaneous separation of lipid species and their oxidation products. Journal of Chromatography A, 2021, 1644, 462106.	3.7	14
134	Removal of phenolic compounds from de-oiled sunflower kernels by aqueous ethanol washing. Food Chemistry, 2021, 362, 130204.	8.2	14
135	Prenylated (iso)flavonoids as antifungal agents against the food spoiler Zygosaccharomyces parabailii. Food Control, 2022, 132, 108434.	5.5	14
136	Snooker Structure-Based Pharmacophore Model Explains Differences in Agonist and Blocker Binding to Bitter Receptor hTAS2R39. PLoS ONE, 2015, 10, e0118200.	2.5	14
137	Fungal and Plant Xyloglucanases May Act in Concert During Liquefaction of Apples. Journal of the Science of Food and Agriculture, 1997, 73, 407-416.	3.5	13
138	Expression of alternansucrase in potato plants. Biotechnology Letters, 2007, 29, 1135-1142.	2.2	12
139	Quantitative Fate of Chlorogenic Acid during Enzymatic Browning of Potato Juice. Journal of Agricultural and Food Chemistry, 2013, 61, 1563-1572.	5.2	12
140	Reactivity of <i>p</i> -Coumaroyl Groups in Lignin upon Laccase and Laccase/HBT Treatments. ACS Sustainable Chemistry and Engineering, 2020, 8, 8723-8731.	6.7	12
141	Structural basis for non-genuine phenolic acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase CloQ from the ABBA/PT-barrel superfamily. PLoS ONE, 2017, 12, e0174665.	2.5	12
142	Tea phenolics as prebiotics. Trends in Food Science and Technology, 2022, 127, 156-168.	15.1	12
143	Expression of an engineered granule-bound Escherichia coli maltose acetyltransferase in wild-type and amf potato plants. Plant Biotechnology Journal, 2007, 5, 134-145.	8.3	11
144	Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea. Journal of Agricultural and Food Chemistry, 2016, 64, 6011-6023.	5.2	11

#	Article	IF	CITATIONS
145	A method to identify and quantify the complete peptide composition in protein hydrolysates. Analytica Chimica Acta, 2022, 1201, 339616.	5.4	11
146	Remodelling Pectin Structure In Potato. Developments in Plant Genetics and Breeding, 2000, 6, 245-256.	0.6	10
147	Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR. Plant Physiology and Biochemistry, 2009, 47, 1116-1118.	5.8	10
148	Preliminary UHPLC–PDA–ESI-MS screening of light-accelerated autoxidation products of the tetrapyrrole biliverdin. Food Chemistry, 2015, 173, 624-628.	8.2	10
149	A tandem mass spectrometry method based on selected ions detects lowâ€abundance phenolics in black tea – theatridimensins as products of the oxidative cascade. Rapid Communications in Mass Spectrometry, 2016, 30, 1797-1805.	1.5	10
150	Xyloglucan endotransglycosylase activity in apples is ripening-related: implications for fruit juice processing. Journal of the Science of Food and Agriculture, 1998, 78, 46-52.	3.5	9
151	QSAR of 1,4-benzoxazin-3-one antimicrobials and their drug design perspectives. Bioorganic and Medicinal Chemistry, 2018, 26, 6105-6114.	3.0	9
152	Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation. Food Chemistry, 2020, 317, 126389.	8.2	8
153	Toward a Systematic Nomenclature for (Neo)Lignanamides. Journal of Natural Products, 2021, 84, 956-963.	3.0	8
154	QSAR-based physicochemical properties of isothiocyanate antimicrobials against gram-negative and gram-positive bacteria. LWT - Food Science and Technology, 2021, 144, 111222.	5.2	8
155	Glycosyl hydrolases from Bifidobacterium adolescentis DSM20083. An overview. Dairy Science and Technology, 2005, 85, 125-133.	0.9	8
156	Facile Amidation of Non-Protected Hydroxycinnamic Acids for the Synthesis of Natural Phenol Amides. Molecules, 2022, 27, 2203.	3.8	8
157	Dimers of a GFG hexasaccharide occur in apple fruit xyloglucan. Carbohydrate Research, 1997, 305, 233-242.	2.3	7
158	Expression of a cassava granuleâ€bound starch synthase gene in the amyloseâ€free potato only partially restores amylose content. Plant, Cell and Environment, 1999, 22, 1311-1318.	5.7	7
159	Resolubilization of Protein from Water-Insoluble Phlorotannin–Protein Complexes upon Acidification. Journal of Agricultural and Food Chemistry, 2017, 65, 9595-9602.	5.2	7
160	The interplay between antimicrobial activity and reactivity of isothiocyanates. LWT - Food Science and Technology, 2020, 134, 109843.	5.2	7
161	Induction of promising antibacterial prenylated isoflavonoids from different subclasses by sequential elicitation of soybean. Phytochemistry, 2020, 179, 112496.	2.9	7
162	Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. Journal of Agricultural and Food Chemistry, 2021, 69, 2477-2484.	5.2	7

#	Article	IF	CITATIONS
163	Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato. Plant Physiology and Biochemistry, 2003, 41, 965-971.	5.8	6
164	Facile enzymatic \hat{Cl}^3 -acylation of lignin model compounds. Catalysis Communications, 2020, 136, 105919.	3.3	5
165	A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Analytica Chimica Acta, 2021, 1180, 338874.	5.4	5
166	Towards Unravelling the Biological Significance of the Individual Components of Pectic Hairy Regions in Plants., 2003,, 15-34.		5
167	A tandem CBM25 domain of α-amylase from Microbacterium aurum as potential tool for targeting proteins to starch granules during starch biosynthesis. BMC Biotechnology, 2017, 17, 86.	3.3	4
168	Design of Interactive Protocols that Help Students to Prepare for Laboratory Work. Journal of Chemical Education, 2022, 99, 612-618.	2.3	2
169	Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. Journal of Functional Foods, 2022, 92, 105066.	3.4	2
170	Technological Feasibility., 2006,, 51-98.		0
171	Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules. Progress in Natural Science: Materials International, 2006, 16, 1295-1299.	4.4	0
172	Enzymes Degrading Rhamnogalacturonan and Xylogalacturonan. , 2002, , .		0
173	Breeding for Improved and Novel Starch Characteristics in Potato. , 2007, , 405-408.		0