M Esperanza CerdÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Extremophilic Lipases and Esterases from Metagenomics. Current Protein and Peptide Science, 2014, 15, 445-455.	1.4	144
2	Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 2012, 177, 392-401.	2.8	88
3	A hypoxic consensus operator and a constitutive activation region regulate the ANB1 gene of Saccharomyces cerevisiae Molecular and Cellular Biology, 1990, 10, 5921-5926.	2.3	82
4	Respirofermentative metabolism in Kluyveromyces lactis:. Enzyme and Microbial Technology, 2000, 26, 699-705.	3.2	81
5	The yeast transcriptome in aerobic and hypoxic conditions: effects ofhap1,rox1,rox3andsrb10deletions. Molecular Microbiology, 2002, 43, 545-555.	2.5	77
6	Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microbial Cell Factories, 2009, 8, 46.	4.0	75
7	Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene, 1994, 139, 43-49.	2.2	71
8	Hot Spring Metagenomics. Life, 2013, 3, 308-320.	2.4	69
9	Respirofermentative metabolism in Kluyveromyces lactis: Ethanol production and the Crabtree effect. Enzyme and Microbial Technology, 1996, 18, 585-591.	3.2	59
10	Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Applied Microbiology and Biotechnology, 2017, 101, 6969-6980.	3.6	57
11	Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes. Frontiers in Microbiology, 2015, 6, 1291.	3.5	54
12	Kluyveromyces marxianus as a host for heterologous protein synthesis. Applied Microbiology and Biotechnology, 2016, 100, 6193-6208.	3.6	49
13	Cellulases from Thermophiles Found by Metagenomics. Microorganisms, 2018, 6, 66.	3.6	46
14	Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations. EMBO Journal, 2001, 20, 3177-3186.	7.8	45
15	Reoxidation of cytosolic NADPH inKluyveromyces lactis. FEMS Yeast Research, 2006, 6, 371-380.	2.3	43
16	Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose byKluyveromyces lactis rag2mutants. FEBS Letters, 1996, 387, 7-10.	2.8	41
17	Title is missing!. Biotechnology Letters, 1998, 12, 253-256.	0.5	40
18	Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microbial Cell Factories, 2010, 9, 4.	4.0	40

#	Article	IF	CITATIONS
19	New secretory strategies for Kluyveromyces lactis \hat{l}^2 -galactosidase. Protein Engineering, Design and Selection, 2001, 14, 379-386.	2.1	39
20	Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases. Journal of Biological Chemistry, 2010, 285, 28020-28033.	3.4	36
21	Biobutanol from cheese whey. Microbial Cell Factories, 2015, 14, 27.	4.0	35
22	Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Applied Microbiology and Biotechnology, 2011, 89, 375-385.	3.6	34
23	Transcript analysis of 250 novel yeast genes from chromosome XIV. , 1999, 15, 329-350.		33
24	Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microbial Cell Factories, 2006, 5, 41.	4.0	33
25	The nuclear genes encoding the internal (KINDI1) and external (KINDE1) alternative NAD(P)H:ubiquinone oxidoreductases of mitochondria from Kluyveromyces lactis. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 199-210.	1.0	31
26	Permeabilization ofKluyveromyces lactis cells for milk whey saccharification: A comparison of different treatments. Biotechnology Letters, 1992, 6, 289-292.	0.5	29
27	High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	4.0	29
28	Regulation of cytochromecexpression in the aerobic respiratory yeastKluyveromyces lactis. FEBS Letters, 1995, 360, 39-42.	2.8	28
29	Covalent immobilization of β-galactosidase on corn grits. A system for lactose hydrolysis without diffusional resistance. Process Biochemistry, 1994, 29, 7-12.	3.7	27
30	Heterologous Kluyveromyces lactis β-galactosidase production and release by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 235-241.	2.4	27
31	Heme-mediated transcriptional control in Kluyveromyces lactis. Current Genetics, 2000, 38, 171-177.	1.7	27
32	Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. Journal of Biotechnology, 2004, 109, 131-137.	3.8	27
33	The Challenges and Opportunities of LncRNAs in Ovarian Cancer Research and Clinical Use. Cancers, 2020, 12, 1020.	3.7	26
34	Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. Journal of Biotechnology, 2010, 145, 226-232.	3.8	25
35	Structural features of <i>Aspergillus niger</i> βâ€galactosidase define its activity against glycoside linkages. FEBS Journal, 2017, 284, 1815-1829.	4.7	25
36	Disruption of six novelSaccharomyces cerevisiae genes reveals thatYGL129c is necessary for growth in non-fermentable carbon sources,YGL128c for growth at low or high temperatures andYGL125w is implicated in the biosynthesis of methionine. , 1999, 15, 145-154.		24

#	Article	IF	CITATIONS
37	Characterization of the second external alternative dehydrogenase from mitochondria of the respiratory yeast Kluyveromyces lactis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1476-1484.	1.0	24
38	Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactis beta-galactosidase for high-temperature industrial applications. Scientific Reports, 2017, 7, 45535.	3.3	24
39	Oxygen-dependent upstream activation sites of Saccharomyces cerevisiae cytochrome c genes are related forms of the same sequence Molecular and Cellular Biology, 1988, 8, 2275-2279.	2.3	23
40	δ-Aminolevulinate synthase is required for apical transcellular barrier formation in the skin of the Drosophila larva. European Journal of Cell Biology, 2012, 91, 204-215.	3.6	23
41	Genomic Sequence of the Yeast Kluyveromyces marxianus CCT 7735 (UFV-3), a Highly Lactose-Fermenting Yeast Isolated from the Brazilian Dairy Industry. Genome Announcements, 2014, 2, .	0.8	23
42	Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied Microbiology and Biotechnology, 2012, 94, 173-184.	3.6	22
43	Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Frontiers in Microbiology, 2019, 10, 405.	3.5	22
44	Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome, 2004, 47, 970-978.	2.0	21
45	Sequence of a cytochromec gene fromKluyveromyces lactis and its upstream region. Yeast, 1993, 9, 201-204.	1.7	20
46	Regulatory factors controlling transcription of <i>Saccharomyces cerevisiae IXR1</i> by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating <i>ROX1</i> and <i>IXR1</i> cross-regulation. Biochemical Journal, 2010, 425, 235-243.	3.7	20
47	Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microbial Cell Factories, 2019, 18, 172.	4.0	20
48	Dealing with different methods for Kluyveromyces lactis β-galactosidase purification. Biological Procedures Online, 1998, 1, 48-58.	2.9	19
49	Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock. Comparative and Functional Genomics, 2003, 4, 366-375.	2.0	18
50	Functional characterization of KlHAP1: A model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene, 2007, 405, 96-107.	2.2	18
51	The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Research, 2008, 8, 597-606.	2.3	18
52	An approach to the hypoxic and oxidative stress responses inKluyveromyces lactisby analysis of mRNA levels. FEMS Yeast Research, 2007, 7, 702-714.	2.3	17
53	Production and characterization of two N-terminal truncated esterases from Thermus thermophilus HB27 in a mesophilic yeast: Effect of N-terminus in thermal activity and stability. Protein Expression and Purification, 2011, 78, 120-130.	1.3	17
54	Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochemistry, 2014, 49, 927-935.	3.7	17

M Esperanza CerdÃin

#	Article	IF	CITATIONS
55	Isolation and Characterization of theKlHEM1 Gene inKluyveromyces lactis. , 1997, 13, 961-971.		16
56	Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microbial Cell Factories, 2018, 17, 137.	4.0	16
57	Haem regulation of the mitochondrial import of theKluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach. Yeast, 2001, 18, 41-48.	1.7	15
58	The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnology Letters, 2012, 34, 2161-2173.	2.2	15
59	<i>Kluyveromyces lactis</i> : A Suitable Yeast Model to Study Cellular Defense Mechanisms against Hypoxia-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-14.	4.0	15
60	Improved bioethanol production in an engineered K luyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI 1. Microbial Biotechnology, 2015, 8, 319-330.	4.2	15
61	HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Current Genetics, 2018, 64, 1205-1213.	1.7	15
62	Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 170-175.	2.4	14
63	KlRox1p contributes to yeast resistance to metals and is necessary for KlYCF1 expression in the presence of cadmium. Gene, 2012, 497, 27-37.	2.2	14
64	Characterization of promoter regions involved in high expression of KlCYC1. FEBS Journal, 1998, 256, 67-74.	0.2	13
65	Title is missing!. Biotechnology Letters, 2001, 23, 33-40.	2.2	13
66	lxr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Research, 2010, 10, 309-321.	2.3	13
67	Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes. Microorganisms, 2015, 3, 792-808.	3.6	13
68	TheKlCYC1gene, a downstream region for two differentially regulated transcripts. Yeast, 2001, 18, 1347-1355.	1.7	12
69	Proteomic Analysis of the Oxidative Stress Response inKluyveromyces lactisand Effect of Glutathione Reductase Depletion. Journal of Proteome Research, 2010, 9, 2358-2376.	3.7	12
70	Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers, 2019, 11, 1729.	3.7	12
71	Functional characterization of KlHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 241-249.	1.7	11
72	A transcriptome analysis of Kluyveromyces lactis growing in cheese whey. International Dairy Journal, 2006, 16, 207-214.	3.0	11

M Esperanza CerdÃin

#	Article	IF	CITATIONS
73	lxr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Scientific Reports, 2018, 8, 3090.	3.3	11
74	The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers, 2020, 12, 2435.	3.7	11
75	Kluyveromyces lactis HIS4transcriptional regulation: similarities and differences toSaccharomyces cerevisiae HIS4gene. FEBS Letters, 1999, 458, 72-76.	2.8	10
76	Transcript analysis of 203 novel genes from Saccharomyces cerevisiae in hap1 and rox1 mutant backgrounds. Genome, 2000, 43, 881-886.	2.0	10
77	Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24, 1391-1396.	2.2	10
78	Genome-Wide analysis of yeast transcription upon calcium shortage. Cell Calcium, 2002, 32, 83-91.	2.4	9
79	Regulatory elements in the KlHEM1 promoter. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 128-133.	1.9	9
80	Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from <i>Kluyveromyces lactis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 297-300.	0.7	9
81	Dual function of lxr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 256-269.	1.9	9
82	Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget, 2018, 9, 19050-19064.	1.8	9
83	ldentification of a putative methylenetetrahydrofolate reductase by sequence analysis of a 6·8 kb DNA fragment of yeast chromosome VII. Yeast, 1996, 12, 1047-1051.	1.7	8
84	Cloning Genes From a Library Using a Clustering Strategy and PCR. Molecular Biotechnology, 2004, 26, 35-38.	2.4	8
85	Kluyveromyces lactis β-galactosidase crystallization using full-factorial experimental design. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 178-182.	1.8	8
86	PICDI, a simple program for codon bias calculation. Molecular Biotechnology, 1996, 5, 191-195.	2.4	7
87	Functional motifs outside the kinase domain of yeast Srb10p. Their role in transcriptional regulation and protein-interactions with Tup1p and Srb11p. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1227-1235.	2.3	7
88	KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genetics and Biology, 2015, 82, 95-103.	2.1	7
89	Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus. Biochemistry and Cell Biology, 2016, 94, 480-490.	2.0	7
90	Functional characterisation and transcriptional regulation of the KlHEM12 gene from Kluyveromyces lactis. Current Genetics, 2004, 46, 147-57.	1.7	6

#	Article	IF	CITATIONS
91	A functional analysis of <i>Kluyveromyces lactis</i> glutathione reductase. Yeast, 2010, 27, 431-441.	1.7	6
92	Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin. Microbiology (United Kingdom), 2014, 160, 1357-1368.	1.8	6
93	TheHIS4 gene from the yeastKluyveromyces lactis. , 1998, 14, 687-691.		5
94	TheKlSRB10 gene fromKluyveromyces lactis. Yeast, 2004, 21, 511-518.	1.7	5
95	Isolation and transcriptional regulation of theKluyveromyces lactisFBA1(fructose-1,6-bisphosphate) Tj ETQq1	0.784314 i 1.7	gBJ /Overloc
96	SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 2012, 58, 184-188.	1.7	5
97	Chromosomal mapping of the KICYC1 gene from Kluyveromyces lactis. Genome, 1994, 37, 515-517.	2.0	4
98	Crystallization and preliminary X-ray diffraction data of β-galactosidase from <i>Aspergillus niger</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1529-1531.	0.8	4
99	Heat-Loving β-Galactosidases from Cultured and Uncultured Microorganisms. Current Protein and Peptide Science, 2018, 19, 1224-1234.	1.4	4
100	Genomic analysis and lactose transporter expression in Kluyveromyces marxianus CCT 7735. Fungal Biology, 2019, 123, 687-697.	2.5	4
101	HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers, 2021, 13, 4686.	3.7	4
102	Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Current Medicinal Chemistry, 2020, 27, 3271-3289.	2.4	4
103	Comparative transcriptome analysis of yeast strains carrying slt2, rlm1, and pop2 deletions. Genome, 2011, 54, 99-109.	2.0	3
104	Proteomic Analyses Reveal that Sky1 Modulates Apoptosis and Mitophagy in Saccharomyces cerevisiae Cells Exposed to Cisplatin. International Journal of Molecular Sciences, 2014, 15, 12573-12590.	4.1	3
105	Structural determination of Enzyme-Graphene Nanocomposite Sensor Material. Scientific Reports, 2019, 9, 15519.	3.3	3
106	The Kluyveromyces lactis gene KlGSK-3 combines functions which in Saccharomyces cerevisiae are performed by MCK1 and MSD1. Current Genetics, 1998, 33, 262-267.	1.7	2
107	The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Molecular Microbiology, 2002, 45, 265-265.	2.5	2
108	Characterization of a gene similar toBIK1 in the yeastKluyveromyces lactis. Yeast, 2004, 21, 1067-1075.	1.7	2

#	Article	IF	CITATIONS
109	A functional analysis of <i>KlSRB10</i> : implications in <i>Kluyveromyces lactis</i> transcriptional regulation. Yeast, 2007, 24, 1061-1073.	1.7	2
110	Crystallization and preliminary X-ray diffraction data of α-galactosidase from <i>Saccharomyces cerevisiae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 44-47.	0.7	2
111	The HMGB Protein Kllxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules, 2021, 11, 1392.	4.0	2
112	Isolation and characterization of a NADH-dehydrogenase from rat liver mitochondria. Revista Española De FisiologÃa, 1987, 43, 13-7.	0.0	2
113	Functional characterization of KIHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 431-431.	1.7	1
114	Two Proteins with Different Functions Are Derived from the <i>KlHEM13</i> Gene. Eukaryotic Cell, 2011, 10, 1331-1339.	3.4	1
115	Heterologous Aspergillus niger β-galactosidase secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2007, 131, S199-S200.	3.8	0
116	Extremophilic Esterases for Bioprocessing of Lignocellulosic Feedstocks. , 2017, , 205-223.		0
117	HMG Proteins from Molecules to Disease. Biomolecules, 2022, 12, 319.	4.0	0