List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696093/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Diversity of ageing across the tree of life. Nature, 2014, 505, 169-173.	13.7	800
2	Seed and microsite limitation of recruitment in plant populations. Oecologia, 1992, 91, 360-364.	0.9	671
3	ELASTICITIES: A REVIEW OF METHODS AND MODEL LIMITATIONS. Ecology, 2000, 81, 607-618.	1.5	456
4	Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 2015, 18, 303-314.	3.0	348
5	Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5211-5216.	3.3	290
6	DISPERSAL LIMITATION AND PATCH OCCUPANCY IN FOREST HERBS. Ecology, 2000, 81, 1667-1674.	1.5	283
7	Habitat configuration, species traits and plant distributions. Journal of Ecology, 2002, 90, 796-805.	1.9	225
8	The mechanisms causing extinction debts. Trends in Ecology and Evolution, 2013, 28, 341-346.	4.2	218
9	How do plant ecologists use matrix population models?. Ecology Letters, 2011, 14, 1-8.	3.0	205
10	Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 9, 79-100.	1.1	172
11	Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecology Letters, 2010, 13, 1182-1197.	3.0	161
12	How perennial are perennial plants?. Oikos, 2002, 98, 308-322.	1.2	159
13	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	1.1	141
14	COLONIZATION–EXTINCTION DYNAMICS OF AN EPIPHYTE METAPOPULATION IN A DYNAMIC LANDSCAPE. Ecology, 2005, 86, 106-115.	1.5	135
15	Why do Plants Produce Surplus Flowers? A Reserve-Ovary Model. American Naturalist, 1991, 138, 918-933.	1.0	126
16	Proximate Limits to Seed Production in a Herbaceous Perennial Legume, Lathyrus Vernus. Ecology, 1992, 73, 1820-1831.	1.5	124
17	Reproductive effort and herbivory timing in a perennial herb: fitness components at the individual and population levels. American Journal of Botany, 2002, 89, 1295-1302.	0.8	116
18	Spatiotemporal variation in predispersal seed predation intensity. Oecologia, 1996, 108, 708-713.	0.9	115

#	Article	IF	CITATIONS
19	Demography of the Perennial Herb Lathyrus Vernus. II. Herbivory and Population Dynamics. Journal of Ecology, 1995, 83, 297.	1.9	113
20	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	3.3	108
21	Ability of Matrix Models to Explain the Past and Predict the Future of Plant Populations. Conservation Biology, 2013, 27, 968-978.	2.4	104
22	Fitness Components versus Total Demographic Effects: Evaluating Herbivore Impacts on a Perennial Herb. American Naturalist, 2003, 162, 796-810.	1.0	98
23	Pollen limitation, seed predation and scape length in Primula farinosa. Oikos, 2002, 97, 45-51.	1.2	92
24	Long-term assessment of seed limitation in plants: results from an 11-year experiment. Journal of Ecology, 2006, 94, 1224-1232.	1.9	86
25	Life span correlates with population dynamics in perennial herbaceous plants. American Journal of Botany, 2008, 95, 258-262.	0.8	85
26	Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology, 2018, 250-251, 147-158.	1.9	84
27	Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18202-18207.	3.3	83
28	Advancing environmentally explicit structured population models of plants. Journal of Ecology, 2016, 104, 292-305.	1.9	82
29	The trade-off between dispersability and longevity - an important aspect of plant species diversity. Applied Vegetation Science, 1998, 1, 29-36.	0.9	81
30	Pollen Limitation and Population Growth in a Herbaceous Perennial Legume. Ecology, 1995, 76, 652-656.	1.5	79
31	Timing of Flowering: Opposed Selection on Different Fitness Components and Trait Covariation. American Naturalist, 2009, 173, 819-830.	1.0	79
32	Phenological variation in fruit characteristics in vertebrate-dispersed plants. Oecologia, 1991, 86, 463-470.	0.9	77
33	Demography of the Perennial Herb Lathyrus Vernus. I. Herbivory and Individual Performance. Journal of Ecology, 1995, 83, 287.	1.9	77
34	Interdependent effects of habitat quality and climate on population growth of an endangered plant. Journal of Ecology, 2011, 99, 1211-1218.	1.9	77
35	Direct Perturbation Analysis for Better Conservation. Conservation Biology, 1998, 12, 470-474.	2.4	74
36	No evidence of senescence in a 300â€yearâ€old mountain herb. Journal of Ecology, 2011, 99, 1424-1430.	1.9	73

#	Article	IF	CITATIONS
37	Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. Journal of Ecology, 2006, 94, 131-143.	1.9	72
38	Storage and the delayed costs of reproduction in the understorey perennial Lathyrus vernus. Journal of Ecology, 2001, 89, 237-246.	1.9	70
39	Large-scale spatial dynamics of plants: a response to Freckleton & Watkinson. Journal of Ecology, 2003, 91, 316-320.	1.9	70
40	Mate limited reproductive success in two dioicous mosses. Oikos, 2004, 104, 291-298.	1.2	67
41	Land use and population growth of Primula veris: an experimental demographic approach. Journal of Applied Ecology, 2005, 42, 317-326.	1.9	65
42	Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia, 2015, 177, 181-190.	0.9	64
43	Dispersal Limitation and Patch Occupancy in Forest Herbs. Ecology, 2000, 81, 1667.	1.5	63
44	Variation in vegetative and flowering phenology in a forest herb caused by environmental heterogeneity. American Journal of Botany, 2007, 94, 1570-1576.	0.8	63
45	Selection on flowering time in a lifeâ€cycle context. Oikos, 2015, 124, 92-101.	1.2	63
46	Phenology as a process rather than an event: from individual reaction norms to community metrics. Ecological Monographs, 2019, 89, e01352.	2.4	63
47	Evaluating the Extinction Risk of a Perennial Herb: Demographic Data versus Historical Records. Conservation Biology, 2002, 16, 683-690.	2.4	61
48	Ultimate Functions of Non-Fruiting Flowers in Lathyrus vernus. Oikos, 1993, 68, 45.	1.2	59
49	Linking environmental variation to population dynamics of a forest herb. Journal of Ecology, 2009, 97, 666-674.	1.9	58
50	Influence of habitat quantity, quality and isolation on the distribution and abundance of two epiphytic lichens. Journal of Ecology, 2003, 91, 213-221.	1.9	57
51	Empirical tests of lifeâ€history evolution theory using phylogenetic analysis of plant demography. Journal of Ecology, 2010, 98, 334-344.	1.9	56
52	Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. Journal of Vegetation Science, 2006, 17, 577-582.	1.1	55
53	Spatioâ€ŧemporal variation in fruit production and seed predation in a perennial herb influenced by habitat quality and population size. Journal of Ecology, 2008, 96, 334-345.	1.9	55
54	Reliability of Elasticity Analysis: Reply to Mills et al Conservation Biology, 2001, 15, 278-280.	2.4	54

#	Article	IF	CITATIONS
55	Assessing the lifetime consequences of plant-animal interactions for the perennial herb Lathyrus vernus (Fabaceae). Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5, 145-163.	1.1	53
56	Pre-dispersal seed predation in Primula veris: among-population variation in damage intensity and selection on flower number. Oecologia, 2002, 133, 510-516.	0.9	53
57	Microrefugia: Not for everyone. Ambio, 2015, 44, 60-68.	2.8	51
58	Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1107-1112.	3.3	51
59	Reproductive Effort and Cost of Sexual Reproduction in Female Dicranum polysetum. Bryologist, 2002, 105, 384-397.	0.1	50
60	Among population variation in specialist and generalist seed predation - the importance of host plant distribution, alternative hosts and environmental variation. Oikos, 2005, 111, 39-46.	1.2	50
61	Influence of habitat quantity, quality and isolation on the distribution and abundance of two epiphytic lichens. Journal of Ecology, 2003, 91, 213-221.	1.9	49
62	Secondary Metabolites in Fleshy Fruits: Are Adaptive Explanations Needed?. American Naturalist, 1998, 152, 905-907.	1.0	47
63	Climate warming alters effects of management on population viability of threatened species: results from a 30â€year experimental study on a rare orchid. Global Change Biology, 2013, 19, 2729-2738.	4.2	47
64	Costs of sporophyte production in the moss, Dicranum polysetum. Plant Ecology, 2000, 149, 207-217.	0.7	46
65	POPULATION VIABILITY AND REINTRODUCTION STRATEGIES: A SPATIALLY EXPLICIT LANDSCAPE-LEVEL APPROACH. , 2005, 15, 1377-1386.		46
66	Selection on floral display in insect-pollinated Primula farinosa: effects of vegetation height and litter accumulation. Oecologia, 2006, 150, 225-232.	0.9	46
67	Vegetative phenology constrains the onset of flowering in the perennial herb Lathyrus vernus. Journal of Ecology, 2007, 95, 208-216.	1.9	46
68	Nonâ€linear relationship between intensity of plant–animal interactions and selection strength. Ecology Letters, 2013, 16, 198-205.	3.0	46
69	Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos, 2011, 120, 1183-1190.	1.2	44
70	Historical habitat connectivity affects current genetic structure in a grassland species. Plant Biology, 2013, 15, 195-202.	1.8	44
71	Butterfly seed predation: effects of landscape characteristics, plant ploidy level and population structure. Oecologia, 2007, 152, 275-285.	0.9	43
72	Plant performance in central and northern peripheral populations of the widespread <i>Plantago coronopus</i> . Ecography, 2013, 36, 136-145.	2.1	43

#	Article	IF	CITATIONS
73	Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society, 2015, 20, .	1.0	43
74	Habitat Change and Demography of Primula veris: Identification of Management Targets. Conservation Biology, 2006, 20, 833-843.	2.4	41
75	Environmental context influences both the intensity of seed predation and plant demographic sensitivity to attack. Ecology, 2014, 95, 495-504.	1.5	41
76	Reproductive effort and costs of reproduction do not explain femaleâ€biased sex ratios in the moss <i>Pseudocalliergon trifarium</i> (Amblystegiaceae). American Journal of Botany, 2006, 93, 1313-1319.	0.8	40
77	Environmental context influences the outcome of a plant–seed predator interaction. Oikos, 2007, 116, 864-872.	1.2	40
78	Distribution patterns of vascular plants in lakes - the role of metapopulation dynamics. Ecography, 2005, 28, 49-58.	2.1	39
79	Hiding from the climate: Characterizing microrefugia for boreal forest understory species. Global Change Biology, 2020, 26, 471-483.	4.2	39
80	THE DYNAMICS OF PLANT POPULATIONS: DOES THE HISTORY OF INDIVIDUALS MATTER?. Ecology, 2000, 81, 1675-1684.	1.5	38
81	Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. Botanical Journal of the Linnean Society, 2014, 174, 163-172.	0.8	38
82	Nonlinear relationships between vital rates and state variables in demographic models. Ecology, 2011, 92, 1181-1187.	1.5	37
83	Seed size as an indicator of seed quality: a case study of Primula veris. Acta Oecologica, 2005, 28, 207-212.	0.5	35
84	Seedling recruitment and population ecology. , 2008, , 239-254.		35
85	Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 2020, 43, 637-647.	2.1	35
86	Spatioâ€ŧemporal variation in pollen limitation and reproductive success of two scape morphs in Primula farinosa. New Phytologist, 2006, 169, 615-621.	3.5	34
87	Environmental context influences the outcome of a plant?seed predator interaction. Oikos, 2007, 116, 864-872.	1.2	33
88	Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia, 2010, 163, 99-109.	0.9	32
89	Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos, 2003, 100, 317-324.	1.2	31
90	Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference. Ecology Letters, 2010, 13, 330-337.	3.0	31

#	Article	IF	CITATIONS
91	From near extinction to diversification by means of aÂshift in pollination mechanism in the gymnosperm relict <i>Ephedra</i> (Ephedraceae, Gnetales). Botanical Journal of the Linnean Society, 2016, 180, 461-477.	0.8	30
92	Reliability of Elasticity Analysis: Reply to Mills et al Conservation Biology, 2001, 15, 278-280.	2.4	29
93	Population size affects vital rates but not population growth rate of a perennial plant. Ecology, 2010, 91, 3210-3217.	1.5	29
94	Climate change, phenology, and butterfly host plant utilization. Ambio, 2015, 44, 78-88.	2.8	29
95	No evidence of sexual niche partitioning in a dioecious moss with rare sexual reproduction. Annals of Botany, 2015, 116, 771-779.	1.4	29
96	Modelling and Measuring Plant Life Histories. , 1999, , 27-61.		29
97	Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecological Modelling, 2006, 199, 464-475.	1.2	28
98	FACILITATION IN AN INSECT-POLLINATED HERB WITH A FLORAL DISPLAY DIMORPHISM. Ecology, 2006, 87, 2113-2117.	1.5	28
99	Latitudinal variation in thermal reaction norms of post-winter pupal development in two butterflies differing in phenological specialization. Biological Journal of the Linnean Society, 2014, 113, 981-991.	0.7	28
100	Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. Journal of Animal Ecology, 2018, 87, 150-161.	1.3	28
101	Host plant population size determines cascading effects in a plant–herbivore–parasitoid system. Basic and Applied Ecology, 2006, 7, 191-200.	1.2	27
102	Butterfly oviposition preference is not related to larval performance on a polyploid herb. Ecology and Evolution, 2016, 6, 2781-2789.	0.8	27
103	How best to collect demographic data for population viability analysis models. Journal of Applied Ecology, 2005, 42, 1115-1120.	1.9	26
104	Environmental context drives seed predator-mediated selection on a floral display trait. Evolutionary Ecology, 2010, 24, 433-445.	0.5	26
105	Contextâ€dependent pollinator limitation in stochastic environments: can increased seed set overpower the cost of reproduction in an understorey herb?. Journal of Ecology, 2010, 98, 268-278.	1.9	25
106	Seedling recruitment in the perennial herb Lathyrus vernus. Flora: Morphology, Distribution, Functional Ecology of Plants, 1996, 191, 377-383.	0.6	24
107	PRE-DISPERSAL SEED PREDATION: THE ROLE OF FRUIT ABORTION AND SELECTIVE OVIPOSITION. Ecology, 2007, 88, 2959-2965.	1.5	23
108	Plant ploidy level influences selection by butterfly seed predators. Oikos, 2008, 117, 1020-1025.	1.2	23

#	Article	IF	CITATIONS
109	Selection on plant optical traits and floral scent: Effects via seed development and antagonistic interactions. Basic and Applied Ecology, 2012, 13, 509-515.	1.2	23
110	The developmental race between maturing host plants and their butterfly herbivore – the influence of phenological matching and temperature. Journal of Animal Ecology, 2015, 84, 1690-1699.	1.3	23
111	Climate drives amongâ€year variation in natural selection on flowering time. Ecology Letters, 2020, 23, 653-662.	3.0	23
112	Variation in plant thermal reaction norms along a latitudinal gradient – more than adaptation to season length. Oikos, 2016, 125, 622-628.	1.2	22
113	Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environmental and Experimental Botany, 2020, 170, 103886.	2.0	22
114	Recruitment in <i>Dentaria bulbifera</i> ; the roles of dispersal, habitat quality and mollusc herbivory. Journal of Vegetation Science, 2002, 13, 719-724.	1.1	21
115	The association among herbivory tolerance, ploidy level, and herbivory pressure in cardamine pratensis. Evolutionary Ecology, 2010, 24, 1101-1113.	0.5	21
116	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	3.0	21
117	MUTUALISTS AND ANTAGONISTS MEDIATE FREQUENCY-DEPENDENT SELECTION ON FLORAL DISPLAY. Ecology, 2008, 89, 1564-1572.	1.5	20
118	Differential effects of abandonment on the demography of the grassland perennial <i>Succisa pratensis</i> . Population Ecology, 2014, 56, 151-160.	0.7	19
119	Caterpillar seed predators mediate shifts in selection on flowering phenology in their host plant. Ecology, 2017, 98, 228-238.	1.5	19
120	A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming. Global Change Biology, 2019, 25, 954-962.	4.2	19
121	The Dynamics of Plant Populations: Does the History of Individuals Matter?. Ecology, 2000, 81, 1675.	1.5	18
122	Spatial variability in seed predation in Primula farinosa: local population legacy versus patch selection. Oecologia, 2009, 160, 77-86.	0.9	18
123	The demography of climateâ€driven and densityâ€regulated population dynamics in a perennial plant. Ecology, 2016, 97, 899-907.	1.5	18
124	Phenological Adaptations in Fleshy Vertebrate-Dispersed Fruits of Temperate Plants. Oikos, 1998, 82, 617.	1.2	17
125	Local environment and density-dependent feedbacks determine population growth in a forest herb. Oecologia, 2014, 176, 1023-1032.	0.9	17
126	The timing and asymmetry of plant–pathogen–insect interactions. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201303.	1.2	17

#	Article	IF	CITATIONS
127	Dispersal and persistence: Population processes and community dynamics. Folia Geobotanica, 2000, 35, 107-114.	0.4	16
128	Forest succession and population viability of grassland plants: long repayment of extinction debt in Primula veris. Oecologia, 2016, 181, 125-135.	0.9	16
129	Elasticities: A Review of Methods and Model Limitations. Ecology, 2000, 81, 607.	1.5	16
130	Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology, 2020, 101, e02999.	1.5	15
131	Changes in forest structure drive temperature preferences of boreal understorey plant communities. Journal of Ecology, 2022, 110, 631-643.	1.9	15
132	Morphâ€ s pecific selection on floral traits in a polymorphic plant. Journal of Evolutionary Biology, 2010, 23, 1251-1260.	0.8	13
133	Floral display and habitat quality affect cost of reproduction in <i>Primula farinosa</i> . Oikos, 2012, 121, 1400-1407.	1.2	13
134	Context-dependent resistance against butterfly herbivory in a polyploid herb. Oecologia, 2014, 174, 1265-1272.	0.9	13
135	Flowering schedule in a perennial plant; life-history trade-offs, seed predation, and total offspring fitness. Ecology, 2015, 96, 2280-2288.	1.5	13
136	Matrix population models from 20 studies of perennial plant populations. Ecology, 2012, 93, 951-951.	1.5	12
137	Among-Population Variation in Tolerance to Larval Herbivory by Anthocharis cardamines in the Polyploid Herb Cardamine pratensis. PLoS ONE, 2014, 9, e99333.	1.1	12
138	Performance of Forest Bryophytes with Different Geographical Distributions Transplanted across a Topographically Heterogeneous Landscape. PLoS ONE, 2014, 9, e112943.	1.1	12
139	Local distribution patterns of fleshyâ€fruited woody plants – testing the orchard hypothesis. Ecography, 2021, 44, 481-492.	2.1	11
140	Phenological matching rather than genetic variation in host preference underlies geographical variation in host plants used by orange tip butterflies. Biological Journal of the Linnean Society, 2016, 119, 1060-1067.	0.7	10
141	Sex expression and genotypic sex ratio vary with region and environment in the wetland moss Drepanocladus lycopodioides. Botanical Journal of the Linnean Society, 2020, 192, 421-434.	0.8	10
142	Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. Journal of Ecology, 2021, 109, 3724-3736.	1.9	10
143	Plantâ€herbivore synchrony and selection on plant flowering phenology. Ecology, 2017, 98, 703-711.	1.5	9
144	Direct and plant traitâ€mediated effects of the local environmental context on butterfly oviposition patterns. Oikos, 2018, 127, 825-833.	1.2	9

#	Article	IF	CITATIONS
145	Butterfly–host plant synchrony determines patterns of host use across years and regions. Oikos, 2019, 128, 493-502.	1.2	9
146	Direct and insectâ€mediated effects of pathogens on plant growth and fitness. Journal of Ecology, 2021, 109, 2769-2779.	1.9	9
147	The relationship between pathogen lifeâ€history traits and metapopulation dynamics. New Phytologist, 2022, 233, 2585-2598.	3.5	9
148	Responses of a specialist and a generalist seed predator to variation in their common resource. Oikos, 2009, 118, 1471-1476.	1.2	8
149	Habitat quality and among-population differentiation in reproductive effort and flowering phenology in the perennial herb Primula farinosa. Evolutionary Ecology, 2010, 24, 715-729.	0.5	8
150	Grazers affect selection on inflorescence height both directly and indirectly and effects change over time. Ecology, 2018, 99, 2167-2175.	1.5	8
151	Nonlinear relationships between vital rates and state variables in demographic models. Ecology, 2011, 92, 1181-1187.	1.5	8
152	Interactive effects of drought and edge exposure on old-growth forest understory species. Landscape Ecology, 2022, 37, 1839-1853.	1.9	8
153	Drivers of largeâ€scale spatial demographic variation in a perennial plant. Ecosphere, 2021, 12, e03356.	1.0	7
154	Postglacial peatland vegetation succession in Store Mosse bog, south entral Sweden: An exploration of factors driving species change. Boreas, 2022, 51, 651-666.	1.2	7
155	Genetic divergence of climatically marginal populations of Vicia pisiformis on the Scandinavian Peninsula. Hereditas, 2008, 145, 1-8.	0.5	6
156	Are Annual Growth Intervals Independent Units in The Moss Pseudocalliergon Trifarium (Amblystegiaceae). Bryologist, 2008, 111, 435-443.	0.1	6
157	Modelling the effects of genetics and habitat on the demography of a grassland herb. Basic and Applied Ecology, 2009, 10, 122-130.	1.2	6
158	Timing of flowering and intensity of attack by a butterfly herbivore in a polyploid herb. Ecology and Evolution, 2015, 5, 1863-1872.	0.8	6
159	Correlations between plant climate optima across different spatial scales. Environmental and Experimental Botany, 2020, 170, 103899.	2.0	6
160	<scp>lefko3</scp> : Analysing individual history through sizeâ€classified matrix population models. Methods in Ecology and Evolution, 2021, 12, 378-382.	2.2	6
161	Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia, 2021, 197, 447-457.	0.9	6
162	Seed availability and recruitment of the perennial herb <i>Sanicula europaea</i> ¹ . Ecoscience, 2002, 9, 526-532.	0.6	5

#	Article	IF	CITATIONS
163	Recruitment in Dentaria bulbifera; the roles of dispersal, habitat quality and mollusc herbivory. Journal of Vegetation Science, 2002, 13, 719.	1.1	5
164	Influence of habitat quantity, quality and isolation on the distribution and abundance of two epiphytic lichens. Journal of Ecology, 2003, 91, 213-221.	1.9	5
165	Phenotypic but not genotypic selection for earlier flowering in a perennial herb. Journal of Ecology, 2019, 107, 2650-2659.	1.9	5
166	Plant–animal interactions mediate climatic effects on selection on flowering time. Ecology, 2021, 102, e03466.	1.5	5
167	Plant trait-mediated interactions between early and late herbivores on common figwort (Scrophularia nodosa) and effects on plant seed set. Ecoscience, 2011, 18, 375-381.	0.6	4
168	Plant patch structure influences plant fitness via antagonistic and mutualistic interactions but in different directions. Oecologia, 2016, 180, 1175-1182.	0.9	4
169	Impacts of soil temperature, phenology and plant community composition on invertebrate herbivory in a natural warming experiment. Oikos, 2021, 130, 1572-1582.	1.2	4
170	Spring phenology dominates over light availability in affecting seedling performance and plant attack during the growing season. Forest Ecology and Management, 2021, 495, 119378.	1.4	4
171	Sex and the cost of reproduction through the life course of an extremely long-lived herb. Oecologia, 2019, 191, 369-375.	0.9	3
172	Ecological and evolutionary responses of an arctic plant to variation in microclimate and soil. Oikos, 2021, 130, 211-218.	1.2	3
173	Weatherâ€driven demography and population dynamics of an endemic perennial plant during a 34â€year period. Journal of Ecology, 2022, 110, 582-592.	1.9	3
174	Contrasting effects of different landscape characteristics on population growth of a perennial forest herb. Ecography, 2014, 37, 230-240.	2.1	2
175	Climate change in grasslands $\hat{a} \in \hat{~}$ demography and population dynamics. , 2019, , 172-187.		2
176	Population size affects vital rates but not population growth rate of a perennial plant. Ecology, 2010, 91, 100415162827033.	1.5	2
177	Spring and autumn phenology in an understory herb are uncorrelated and driven by different factors. American Journal of Botany, 2022, 109, 226-236.	0.8	2
178	Different effects of warming treatments in forests <i>versus</i> hedgerows on the understorey plant <i>Geum urbanum</i> . Plant Biology, 2022, , .	1.8	2
179	Resource overlap and dilution effects shape host plant use in a myrmecophilous butterfly. Journal of Animal Ecology, 2019, 88, 649-658.	1.3	1
180	Simultaneous selection on vegetative and reproductive phenology in a perennial herb. Ecology and Evolution, 2022, 12, e8610.	0.8	0

#	Article	IF	CITATIONS
181	The demography of climate-driven and density-regulated population dynamics in a perennial plant. Ecology, 2016, , .	1.5	0