Haifeng Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695885/publications.pdf

Version: 2024-02-01

82	2,082	27	39
papers	citations	h-index	g-index
83	83	83	2233
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chemistry, 2016, 194, 1003-1012.	8.2	156
2	microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10849-E10858.	7.1	96
3	Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves' polysaccharide in STZ-induced diabetic mice. International Journal of Biological Macromolecules, 2013, 61, 317-321.	7.5	69
4	Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 2015, 168, 115-123.	8.2	62
5	Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chemistry, 2016, 204, 320-325.	8.2	62
6	Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. European Food Research and Technology, 2011, 232, 941-950.	3.3	49
7	The anti-diabetic activity of oat β-d-glucan in streptozotocin–nicotinamide induced diabetic mice. International Journal of Biological Macromolecules, 2016, 91, 1170-1176.	7.5	47
8	Inhibition study of red rice polyphenols on pancreatic \hat{l}_{\pm} -amylase activity by kinetic analysis and molecular docking. Journal of Cereal Science, 2017, 76, 186-192.	3.7	47
9	Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry, 2018, 250, 98-104.	8.2	47
10	Extraction of Oat (Avena sativa L.) Antifreeze Proteins and Evaluation of Their Effects on Frozen Dough and Steamed Bread. Food and Bioprocess Technology, 2015, 8, 2066-2075.	4.7	46
11	Extraction of Carrot (Daucus carota) Antifreeze Proteins and Evaluation of Their Effects on Frozen White Salted Noodles. Food and Bioprocess Technology, 2014, 7, 842-852.	4.7	45
12	<scp> </scp> -Arabinose Inhibits Colitis by Modulating Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 13299-13306.	5.2	43
13	Isolation And Identification Of An Antioxidant Peptide Prepared From Fermented Peanut Meal Using <i>Bacillus Subtilis</i> Fermentation. International Journal of Food Properties, 2014, 17, 1237-1253.	3.0	42
14	Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chemistry, 2019, 274, 444-451.	8.2	41
15	Phosphorylation and Enzymatic Hydrolysis with Alcalase and Papain Effectively Reduce Allergic Reactions to Gliadins in Normal Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 6313-6323.	5.2	41
16	Investigation on molecular and morphology changes of protein and starch in rice kernel during cooking. Food Chemistry, 2020, 316, 126262.	8.2	41
17	Advanced glycation end products in food and their effects on intestinal tract. Critical Reviews in Food Science and Nutrition, 2022, 62, 3103-3115.	10.3	38
18	Study of the retrogradation behaviour of rice cake using rapid visco analyser, Fourier transform infrared spectroscopy and Xâ€ray analysis. International Journal of Food Science and Technology, 2010, 45, 871-876.	2.7	36

#	Article	IF	CITATIONS
19	Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions. Journal of Agricultural and Food Chemistry, 2018, 66, 12536-12543.	5.2	34
20	Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacological Research, 2020, 152, 104631.	7.1	34
21	Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chemistry, 2020, 331, 127315.	8.2	33
22	Oat \hat{l}^2 -glucan alleviates DSS-induced colitis <i>via</i> regulating gut microbiota metabolism in mice. Food and Function, 2021, 12, 8976-8993.	4.6	33
23	Wheat bran, as the resource of dietary fiber: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7269-7281.	10.3	33
24	Extraction, purification and identification of antifreeze proteins from cold acclimated malting barley (Hordeum vulgare L.). Food Chemistry, 2015, 175, 74-81.	8.2	32
25	The effects of phosphate salts on the pasting, mixing and noodle-making performance of wheat flour. Food Chemistry, 2019, 283, 353-358.	8.2	31
26	Effect of Vaccinium bracteatum Thunb. leaf pigment on the thermal, pasting, and textural properties and microstructure characterization of rice starch. Food Chemistry, 2017, 228, 435-440.	8.2	30
27	Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chemistry, 2021, 356, 129665.	8.2	30
28	Determination of Key Active Components in Different Edible Oils Affecting Lipid Accumulation and Reactive Oxygen Species Production in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 11943-11956.	5.2	29
29	Effect of the frying process on the properties of gluten protein of you-tiao. Food Chemistry, 2020, 310, 125973.	8.2	29
30	Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chemistry, 2021, 345, 128785.	8.2	29
31	Systematic assessment of oat \hat{l}^2 -glucan catabolism during in vitro digestion and fermentation. Food Chemistry, 2021, 348, 129116.	8.2	29
32	Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Scientific Reports, 2018, 8, 7915.	3.3	27
33	The characterization and stability of the soy protein isolate/1-Octacosanol nanocomplex. Food Chemistry, 2019, 297, 124766.	8.2	26
34	Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chemistry, 2019, 289, 616-624.	8.2	25
35	The effect of oat <i>β</i> â€glucan on <i>in vitro</i> glucose diffusion and glucose transport in rat small intestine. Journal of the Science of Food and Agriculture, 2016, 96, 484-491.	3.5	24
36	Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 2021, 89, 111230.	2.4	23

#	Article	IF	Citations
37	Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. Journal of Food Measurement and Characterization, 2019, 13, 2426-2437.	3.2	22
38	Comparison of Different Soluble Dietary Fibers during the <i>In Vitro</i> Fermentation Process. Journal of Agricultural and Food Chemistry, 2021, 69, 7446-7457.	5.2	22
39	Effect of whole wheat flour on the quality, texture profile, and oxidation stability of instant fried noodles. Journal of Texture Studies, 2017, 48, 607-615.	2.5	21
40	Reduction of 5â€hydroxymethylfurfural formation by flavanâ€3â€ols in Maillard reaction models and fried potato chips. Journal of the Science of Food and Agriculture, 2018, 98, 5294-5301.	3.5	21
41	Effect of structure evolution of starch in rice on the textural formation of cooked rice. Food Chemistry, 2021, 342, 128205.	8.2	20
42	Effect of phosphate salts on the gluten network structure and quality of wheat noodles. Food Chemistry, 2021, 358, 129895.	8.2	20
43	Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. Food and Bioprocess Technology, 2016, 9, 1746-1755.	4.7	19
44	Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins. Food Chemistry, 2016, 194, 272-278.	8.2	19
45	Effect of rice bran fibre on the quality of rice pasta. International Journal of Food Science and Technology, 2018, 53, 81-87.	2.7	19
46	Comparative investigation on metabolite changes in â€~wu mi' production by Vaccinium bracteatum Thunb. leaves based on multivariate data analysis using UPLC–QToF–MS. Food Chemistry, 2019, 286, 146-153.	8.2	18
47	Stability assessment of crocetin and crocetin derivatives in Gardenia yellow pigment and Gardenia fruit pomace in presence of different cooking methods. Food Chemistry, 2020, 312, 126031.	8.2	18
48	Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. European Food Research and Technology, 2013, 237, 591-600.	3.3	17
49	Study of the migration and molecular structure of starch and protein in rice kernel during heating. International Journal of Biological Macromolecules, 2020, 147, 1116-1124.	7.5	17
50	<scp> </scp> -Arabinose Attenuates Gliadin-Induced Food Allergy via Regulation of Th1/Th2 Balance and Upregulation of Regulatory T Cells in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 3638-3646.	5.2	17
51	Isolation, purification and identification of two antioxidant peptides from water hyacinth leaf protein hydrolysates (WHLPH). European Food Research and Technology, 2018, 244, 83-96.	3.3	16
52	Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 2019, 274, 620-628.	8.2	16
53	Tentative characterization of precursor compounds and co-factors of pigment formation in production of â€wu mi' from Vaccinium bracteatum Thunb. Leaves. Food Chemistry, 2018, 262, 199-205.	8.2	15
54	Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. Journal of Agricultural and Food Chemistry, 2018, 66, 5802-5811.	5.2	14

#	Article	IF	CITATIONS
55	Effect of selected strains on physical and organoleptic properties of breads. Food Chemistry, 2019, 276, 547-553.	8.2	14
56	Effect of whole wheat flour on the quality of traditional Chinese Sachima. Food Chemistry, 2014, 152, 184-189.	8.2	12
57	Effects of functional \hat{i}^2 -glucan on proliferation, differentiation, metabolism and its anti-fibrosis properties in muscle cells. International Journal of Biological Macromolecules, 2018, 117, 287-293.	7.5	12
58	In vitro digestibility and quality attributes of white salted noodles supplemented with pullulanase-treated flour. International Journal of Biological Macromolecules, 2019, 123, 1157-1164.	7.5	12
59	Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of 1±-amylase. Food Chemistry, 2020, 326, 126962.	8.2	12
60	Investigation the influences of water-extractable and water-unextractable arabinoxylan on the quality of whole wheat you-tiao and its mechanism. Food Chemistry, 2022, 386, 132809.	8.2	12
61	Novel Metabolic Regulation of Bile Acid Responses to Low Cholesterol in Whole-Grain-Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 8440-8447.	5.2	11
62	Anti-diabetic activity of cassava cross-linked octenyl succinic maltodextrin in STZ-induced diabetic mice. International Journal of Biological Macromolecules, 2014, 64, 247-251.	7.5	10
63	Physical, Functional, and Sensory Characteristics of Cereal Extrudates. International Journal of Food Properties, 2014, 17, 1921-1933.	3.0	10
64	<scp> </scp> -Arabinose suppresses gluconeogenesis through modulating AMP-activated protein kinase in metabolic disorder mice. Food and Function, 2021, 12, 1745-1756.	4.6	10
65	Vaccinium bracteatum Thunb. as a promising resource of bioactive compounds with health benefits: An updated review. Food Chemistry, 2021, 356, 129738.	8.2	10
66	Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics, 2021, 11, 8283-8300.	10.0	10
67	Preparation of wheat gluten hydrolysates with high opioid activity. European Food Research and Technology, 2008, 227, 511-517.	3.3	9
68	A novel green synthesis approach for natural bluish-violet pigments derived from water extracts of Vaccinium bracteatum Thunb. leaves. Industrial Crops and Products, 2019, 142, 111862.	5.2	9
69	Evaluation of the physicochemical properties and in vitro digestibility of the complex formed between rice starch and a novel pigment from Vaccinium bracteatum Thunb. leaf. Food Chemistry, 2022, 374, 131627.	8.2	9
70	Circulating miR-27a-3p as a candidate for a biomarker of whole grain diets for lipid metabolism. Food and Function, 2020, 11, 8852-8865.	4.6	7
71	A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. Phytomedicine, 2022, 95, 153862.	5. 3	7

Membraneâ€disruptive property of a novel antimicrobial peptide from anchovy (<i><scp>E</scp>ngraulis) Tj ETQqQ 0 o rgBT Overlock

#	Article	IF	CITATIONS
73	Impact of ionic liquid properties on selective enrichment of glycerides in direct lipase-catalyzed esterification. RSC Advances, 2016, 6, 108697-108707.	3.6	6
74	Effects of waterâ€unextractable arabinoxylans on the physicochemical and rheological properties of traditional Chinese youtiao. International Journal of Food Science and Technology, 2018, 53, 962-968.	2.7	6
75	Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization. International Journal of Biological Macromolecules, 2022, 194, 993-1001.	7.5	5
76	Evaluation of Hunter color values $\langle i \rangle L \langle i \rangle$, $\langle i \rangle a \langle i \rangle$, and $\langle i \rangle b \langle i \rangle$ of mixed powder. Color Research and Application, 2010, 35, 361-367.	1.6	2
77	Preparation, statistical optimization and characterization of poly(3â€hydroxybutyrate) fermented by <scp><i>Cupriavidus necator</i></scp> utilizing various hydrolysates of alligator weed (<scp><i>Alternanthera philoxeroides</i></scp>) as a sole carbon source. Biotechnology Progress, 2020. 36. e2992.	2.6	2
78	Geniposide suppresses thermogenesis via regulating PKA catalytic subunit in adipocytes. Toxicology, 2021, 464, 153014.	4.2	2
79	l-Arabinose improves hypercholesterolemia via regulating bile acid metabolism in high-fat-high-sucrose diet-fed mice. Nutrition and Metabolism, 2022, 19, 30.	3.0	2
80	Hydroxysafflor Yellow A Alters Fuel Selection From Glucose to Fat by Activating the PPARδ Pathway in Myocytes. Journal of Agricultural and Food Chemistry, 2021, 69, 13838-13848.	5.2	1
81	The Influence of Water-Unextractable Arabinoxylan and Its Hydrolysates on the Aggregation and Structure of Gluten Proteins. Frontiers in Nutrition, 2022, 9, 877135.	3.7	1
82	Hydroxysafflor Yellow A - An Important Natural Pigment for Treating Metabolic Diseases. Food Reviews International, 2023, 39, 3676-3690.	8.4	1