Paul A Brink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695485/publications.pdf Version: 2024-02-01

DALLI A RDINK

#	Article	IF	CITATIONS
1	Genotype-Phenotype Correlation in the Long-QT Syndrome. Circulation, 2001, 103, 89-95.	1.6	1,641
2	Left Cardiac Sympathetic Denervation in the Management of High-Risk Patients Affected by the Long-QT Syndrome. Circulation, 2004, 109, 1826-1833.	1.6	600
3	The genetic basis of long QT and short QT syndromes: A mutation update. Human Mutation, 2009, 30, 1486-1511.	2.5	403
4	Sudden Death due to Troponin T Mutations. Journal of the American College of Cardiology, 1997, 29, 549-555.	2.8	346
5	Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. Journal of Clinical Investigation, 2009, 119, 2737-2744.	8.2	290
6	Who Are the Long-QT Syndrome Patients Who Receive an Implantable Cardioverter-Defibrillator and What Happens to Them?. Circulation, 2010, 122, 1272-1282.	1.6	261
7	<i>NOS1AP</i> Is a Genetic Modifier of the Long-QT Syndrome. Circulation, 2009, 120, 1657-1663.	1.6	241
8	Phenotypic Variability and Unusual Clinical Severity of Congenital Long-QT Syndrome in a Founder Population. Circulation, 2005, 112, 2602-2610.	1.6	179
9	The Common Long-QT Syndrome Mutation KCNQ1/A341V Causes Unusually Severe Clinical Manifestations in Patients With Different Ethnic Backgrounds. Circulation, 2007, 116, 2366-2375.	1.6	157
10	Gene for Progressive Familial Heart Block Type I Maps to Chromosome 19q13. Circulation, 1995, 91, 1633-1640.	1.6	111
11	The Influence of the Angiotensin I Converting Enzyme Genotype in Familial Hypertrophic Cardiomyopathy Varies with the Disease Gene Mutation. Journal of Molecular and Cellular Cardiology, 1997, 29, 831-838.	1.9	110
12	The Origins of Hypertrophic Cardiomyopathy–Causing Mutations in Two South African Subpopulations: A Unique Profile of Both Independent and Founder Events. American Journal of Human Genetics, 1999, 65, 1308-1320.	6.2	106
13	Neural Control of Heart Rate Is an Arrhythmia Risk Modifier in Long QT Syndrome. Journal of the American College of Cardiology, 2008, 51, 920-929.	2.8	99
14	Mutations of the Light Meromyosin Domain of the β-Myosin Heavy Chain Rod in Hypertrophic Cardiomyopathy. Circulation Research, 2002, 90, 263-269.	4.5	96
15	Autonomic Control of Heart Rate and QTÂInterval Variability Influences Arrhythmic Risk in Long QT Syndrome Type 1. Journal of the American College of Cardiology, 2015, 65, 367-374.	2.8	70
16	Identification of a <i>KCNQ1</i> Polymorphism Acting as a Protective Modifier Against Arrhythmic Risk in Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2013, 6, 354-361.	5.1	69
17	<i>AKAP9</i> Is a Genetic Modifier of Congenital Long-QT Syndrome Type 1. Circulation: Cardiovascular Genetics, 2014, 7, 599-606.	5.1	59
18	Does Pregnancy Increase Cardiac Risk for LQT1 Patients With the KCNQ1-A341V Mutation?. Journal of the American College of Cardiology, 2006, 48, 1410-1415.	2.8	56

PAUL A BRINK

#	Article	IF	CITATIONS
19	Vagal Reflexes Following an Exercise Stress Test. Journal of the American College of Cardiology, 2012, 60, 2515-2524.	2.8	51
20	Obsessive–compulsive disorder and the promoter region polymorphism (5-HTTLPR) in the serotonin transporter gene (SLC6A4): a negative association study in the Afrikaner population. International Journal of Neuropsychopharmacology, 2000, 3, 327-331.	2.1	44
21	Of founder populations, long QT syndrome, and destiny. Heart Rhythm, 2009, 6, S25-S33.	0.7	40
22	Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1. PLoS ONE, 2014, 9, e93808.	2.5	35
23	Characterisation of the human voltage-gated potassium channel gene, KCNA7, a candidate gene for inherited cardiac disorders, and its exclusion as cause of progressive familial heart block I (PFHBI). European Journal of Human Genetics, 2002, 10, 36-43.	2.8	32
24	Stereotypies: Prevalence and Association with Compulsive and Impulsive Symptoms in College Students. Psychopathology, 2000, 33, 31-35.	1.5	31
25	Genetic variation in angiotensin-converting enzyme 2 gene is associated with extent of left ventricular hypertrophy in hypertrophic cardiomyopathy. Human Genetics, 2008, 124, 57-61.	3.8	28
26	Mutation location and <i>I</i> ÂKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. European Heart Journal, 2021, 42, 4743-4755.	2.2	26
27	Identification of a new missense mutation at Arg403, a CpG mutation hotspot, in exon 13 of the β-myosin heavy chain gene in hypertrophic cardiomyopathy. Human Molecular Genetics, 1993, 2, 1731-1732.	2.9	23
28	NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovascular Research, 2021, 117, 472-483.	3.8	22
29	Genetic Modifiers for the Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2016, 9, 330-339.	5.1	21
30	ldentification of a novel Ala797Thr mutation in exon 21 of the β-myosin heavy chain gene in hypertrophic cardiomyopathy. Human Mutation, 1995, 6, 197-198.	2.5	18
31	A gene locus for progressive familial heart block type II (PFHBII) maps to chromosome 1q32.2-q32.3. Human Genetics, 2005, 118, 133-137.	3.8	17
32	Troponin T and β-myosin mutations have distinct cardiac functional effects in hypertrophic cardiomyopathy patients without hypertrophy. Cardiovascular Research, 2008, 77, 687-694.	3.8	17
33	Article visibility: journal impact factor and availability of full text in PubMed Central and open access. Cardiovascular Journal of Africa, 2013, 24, 295-6.	0.4	17
34	Long-term follow-up of R403WMYH7 and R92WTNNT2 HCM families: mutations determine left ventricular dimensions but not wall thickness during disease progression. Cardiovascular Journal of Africa, 2007, 18, 146-53.	0.4	14
35	Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 274-280.	1.7	13
36	Abnormal blood pressure response to exercise occurs more frequently in hypertrophic cardiomyopathy patients with the R92W troponin T mutation than in those with myosin mutations. Heart Rhythm, 2009, 6, S18-S24.	0.7	12

PAUL A BRINK

#	Article	IF	CITATIONS
37	Low-Pass Filtering Approach via Empirical Mode Decomposition Improves Short-Scale Entropy-Based Complexity Estimation of QT Interval Variability in Long QT Syndrome Type 1 Patients. Entropy, 2014, 16, 4839-4854.	2.2	12
38	Diagnostic disparity and identification of two TNNI3 gene mutations, one novel and one arising de novo, in South African patients with restrictive cardiomyopathy and focal ventricular hypertrophy. Cardiovascular Journal of Africa, 2015, 26, 63-69.	0.4	11
39	Response by Crotti et al to Letter Regarding Article, "Genetic Modifiers for the Long-QT Syndrome: How Important Is the Role of Variants in the 3′ Untranslated Region of KCNQ1?― Circulation: Cardiovascular Genetics, 2016, 9, 581-582.	5.1	10
40	Long QT syndrome in South Africa : the results of comprehensive genetic screening : cardiovascular topic. Cardiovascular Journal of Africa, 2013, 24, 231-237.	0.4	9
41	Refined multiscale entropy analysis of heart period and QT interval variabilities in long QT syndrome type-1 patients. , 2013, 2013, 5554-7.		4
42	A Refined Multiscale Self-Entropy Approach for the Assessment of Cardiac Control Complexity: Application to Long QT Syndrome Type 1 Patients. Entropy, 2015, 17, 7768-7785.	2.2	4
43	Generation of two human induced pluripotent stem cell (hiPSC) lines from a long QT syndrome South African founder population. Stem Cell Research, 2019, 39, 101510.	0.7	3
44	QTc prolongation prior to angiography predicts poor outcome and associates significantly with lower left ventricular ejection fractions and higher left ventricular end-diastolic pressures : cardiovascular topic. Cardiovascular Journal of Africa, 2012, 23, 541-545.	0.4	3
45	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi007-A from a Long QT Syndrome type 1 patient carrier of two common variants in the NOS1AP gene. Stem Cell Research, 2019, 36, 101416.	0.7	2
46	Renal denervation: dark past, bright future?. Cardiovascular Journal of Africa, 2019, 30, 290-296.	0.4	2
47	Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy. Skeletal Radiology, 2009, 38, 1197-1203.	2.0	1
48	Time, frequency and information domain analysis of heart period and QT variability in asymptomatic long QT syndrome type 2 patients. , 2015, 2015, 294-7.		1
49	Multiscale Complexity Analysis of Short QT Interval Variability Series Stratifies the Arrhythmic Risk of Long QT Syndrome Type 1 Patients. , 2018, , .		1
50	Bongani Mayosi, a hero remembered. Cardiovascular Journal of Africa, 2018, 29, 206.	0.4	1
51	Filtering approach based on empirical mode decomposition improves the assessment of short scale complexity in long QT syndrome type 1 population. , 2014, 2014, 6671-4.		0
52	Reflections on a range of cardiovascular issues. Cardiovascular Journal of Africa, 2013, 24, 343.	0.4	0
53	From the economics of TAVI and the pathophysiology of heart and vessel disease to metabolic disease in Africa and the developing world. Cardiovascular Journal of Africa, 2014, 25, 3.	0.4	0
54	From the editor's desk. Cardiovascular Journal of Africa, 2014, 25, 43.	0.4	0

#	Article	IF	CITATIONS
55	Measuring publication impact, and publishing and funding models. Cardiovascular Journal of Africa, 2016, 27, 335.	0.4	0