Sergei V. Kalinin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169541/publications.pdf

Version: 2024-02-01

6471 2675 39,762 805 95 157 citations h-index g-index papers 823 823 823 23631 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. Advanced Materials, 2022, 34, e2106426.	21.0	20
2	Disentangling ferroelectric domain wall geometries and pathways in dynamic piezoresponse force microscopy via unsupervised machine learning. Nanotechnology, 2022, 33, 055707.	2.6	14
3	Towards automating structural discovery in scanning transmission electron microscopy [*] . Machine Learning: Science and Technology, 2022, 3, 015024.	5.0	11
4	Sculpting the Plasmonic Responses of Nanoparticles by Directed Electron Beam Irradiation. Small, 2022, 18, e2105099.	10.0	5
5	Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process. Machine Learning: Science and Technology, 2022, 3, 015003.	5.0	14
6	Latent Mechanisms of Polarization Switching from In Situ Electron Microscopy Observations. Advanced Functional Materials, 2022, 32, .	14.9	7
7	Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	59
8	Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345.	21.0	30
9	Chemical control of polarization in thin strained films of a multiaxial ferroelectric: Phase diagrams and polarization rotation. Physical Review B, 2022, 105, .	3.2	2
10	Experimental discovery of structure–property relationships in ferroelectric materials via active learning. Nature Machine Intelligence, 2022, 4, 341-350.	16.0	37
11	Exploring Causal Physical Mechanisms via Non-Gaussian Linear Models and Deep Kernel Learning: Applications for Ferroelectric Domain Structures. ACS Nano, 2022, 16, 1250-1259.	14.6	12
12	Tunable Microwave Conductance of Nanodomains in Ferroelectric PbZr _{0.2} Ti _{0.8} O ₃ Thin Film. Advanced Electronic Materials, 2022, 8, 2100952.	5.1	5
13	Bridging microscopy with molecular dynamics and quantum simulations: an atomAl based pipeline. Npj Computational Materials, 2022, 8, .	8.7	10
14	Automated Experiment in 4D-STEM: Exploring Emergent Physics and Structural Behaviors. ACS Nano, 2022, 16, 7605-7614.	14.6	23
15	Exploring leakage in dielectric films via automated experiments in scanning probe microscopy. Applied Physics Letters, 2022, 120, .	3.3	5
16	Highly enhanced ferroelectricity in HfO ₂ -based ferroelectric thin film by light ion bombardment. Science, 2022, 376, 731-738.	12.6	58
17	Observability of negative capacitance of a ferroelectric film: Theoretical predictions. Physical Review B, 2022, 105, .	3.2	2
18	Size Effect of Local Current-Voltage Characteristics of <i>MX</i> ₂ Nanoflakes: Local Density of States Reconstruction from Scanning Tunneling Microscopy Experiments. Physical Review Applied, 2022, 17, .	3.8	0

#	Article	IF	Citations
19	Dynamic control of ferroionic states in ferroelectric nanoparticles. Acta Materialia, 2022, 237, 118138.	7.9	2
20	Strain-Induced asymmetry and on-site dynamics of silicon defects in graphene. Carbon Trends, 2022, 9, 100189.	3.0	0
21	Ferroelastic Nanodomain-mediated Mechanical Switching of Ferroelectricity in Thick Epitaxial Films. Nano Letters, 2021, 21, 445-452.	9.1	10
22	Probing potential energy landscapes via electron-beam-induced single atom dynamics. Acta Materialia, 2021, 203, 116508.	7.9	5
23	Direct Observation of Photoinduced Ion Migration in Lead Halide Perovskites. Advanced Functional Materials, 2021, 31, 2008777.	14.9	41
24	Quantifying the Dynamics of Protein Self-Organization Using Deep Learning Analysis of Atomic Force Microscopy Data. Nano Letters, 2021, 21, 158-165.	9.1	17
25	Towards data-driven next-generation transmission electron microscopy. Nature Materials, 2021, 20, 274-279.	27.5	130
26	Alignment of Au nanorods along <i>de novo</i> designed protein nanofibers studied with automated image analysis. Soft Matter, 2021, 17, 6109-6115.	2.7	4
27	Toward Decoding the Relationship between Domain Structure and Functionality in Ferroelectrics via Hidden Latent Variables. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1693-1703.	8.0	22
28	Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality. Npj Computational Materials, $2021, 7, .$	8.7	28
29	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. ACS Nano, 2021, 15, 3971-3995.	14.6	36
30	Computational scanning tunneling microscope image database. Scientific Data, 2021, 8, 57.	5.3	15
31	Predictability as a probe of manifest and latent physics: The case of atomic scale structural, chemical, and polarization behaviors in multiferroic Sm-doped BiFeO3. Applied Physics Reviews, 2021, 8, .	11.3	7
32	Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging. Npj Computational Materials, 2021, 7, .	8.7	1
33	Investigating phase transitions from local crystallographic analysis based on statistical learning of atomic environments in 2D MoS2-ReS2. Applied Physics Reviews, 2021, 8, 011409.	11.3	7
34	Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. Science Advances, 2021, 7, .	10.3	38
35	Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods <i>via</i> Rotationally Invariant Latent Representations. ACS Nano, 2021, 15, 6471-6480.	14.6	19
36	Separating Physically Distinct Mechanisms in Complex Infrared Plasmonic Nanostructures via Machine Learning Enhanced Electron Energy Loss Spectroscopy. Advanced Optical Materials, 2021, 9, 2001808.	7.3	13

#	Article	IF	Citations
37	Predictability of Localized Plasmonic Responses in Nanoparticle Assemblies. Small, 2021, 17, e2100181.	10.0	17
38	Correlation Between Corrugation-Induced Flexoelectric Polarization and Conductivity of Low-Dimensional Transition Metal Dichalcogenides. Physical Review Applied, 2021, 15, .	3.8	12
39	Role of Decomposition Product Ions in Hysteretic Behavior of Metal Halide Perovskite. ACS Nano, 2021, 15, 9017-9026.	14.6	13
40	Ferroelectric and Charge Transport Properties in Strain-Engineered Two-Dimensional Lead Iodide Perovskites. Chemistry of Materials, 2021, 33, 4077-4088.	6.7	10
41	Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering. Npj Computational Materials, 2021, 7, .	8.7	15
42	Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 12355-12365.	3.1	3
43	Revealing the Chemical Bonding in Adatom Arrays via Machine Learning of Hyperspectral Scanning Tunneling Spectroscopy Data. ACS Nano, 2021, 15, 11806-11816.	14.6	13
44	Bayesian Learning of Adatom Interactions from Atomically Resolved Imaging Data. ACS Nano, 2021, 15, 9649-9657.	14.6	8
45	Ferroic Halide Perovskite Optoelectronics. Advanced Functional Materials, 2021, 31, 2102793.	14.9	23
46	Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmentalâ€Dependent Impedance Spectroscopy. Advanced Science, 2021, 8, e2002510.	11.2	23
47	Electron beam modification of plasmonic responses of nanoparticles. Microscopy and Microanalysis, 2021, 27, 3066-3068.	0.4	0
48	Automated Experiment in SPM: Bayesian Optimization for efficient searching of parameter space to maximize functional response. Microscopy and Microanalysis, 2021, 27, 470-471.	0.4	1
49	Building an edge computing infrastructure for rapid multi-dimensional electron microscopy. Microscopy and Microanalysis, 2021, 27, 56-57.	0.4	2
50	Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy. Npj Computational Materials, 2021, 7, .	8.7	26
51	Atomic-scale Feedback-controlled Electron Beam Fabrication of 2D Materials. Microscopy and Microanalysis, 2021, 27, 3072-3073.	0.4	0
52	Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics. ACS Nano, 2021, 15, 11253-11262.	14.6	23
53	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	14.6	49
54	Automatic detection of crystallographic defects in STEM images by unsupervised learning with translational invariance. Microscopy and Microanalysis, 2021, 27, 1460-1462.	0.4	1

#	Article	IF	Citations
55	A combined theoretical and experimental study of the phase coexistence and morphotropic boundaries in ferroelectric-antiferroelectric-antiferrodistortive multiferroics. Acta Materialia, 2021, 213, 116939.	7.9	3
56	Propagation of priors for more accurate and efficient spectroscopic functional fits and their application to ferroelectric hysteresis. Machine Learning: Science and Technology, 2021, 2, 045002.	5.0	2
57	Direct mapping of polarization fields from STEM images: A Deep Learning based exploration of ferroelectrics. Microscopy and Microanalysis, 2021, 27, 2990-2992.	0.4	0
58	Electron Beam Control of Dopants in 2D and 3D Materials. Microscopy and Microanalysis, 2021, 27, 2150-2153.	0.4	0
59	Stress-induced phase transitions in nanoscale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cu</mml:mi><mml:mi><mml:mi>mathvariant="normal">P</mml:mi><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mi><mml:mn>6</mml:mn></mml:mi></mml:msub></mml:mi></mml:mrow></mml:math> .	i> <mml:m 3.2</mml:m 	ısub> <mml:r 14</mml:r
60	Flexosensitive polarization vortices in thin ferroelectric films. Physical Review B, 2021, 104, .	3.2	9
61	Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding. Npj Computational Materials, 2021, 7, .	8.7	5
62	Disentangling Ferroelectric Wall Dynamics and Identification of Pinning Mechanisms via Deep Learning. Advanced Materials, 2021, 33, e2103680.	21.0	17
63	Sub-10 nm Probing of Ferroelectricity in Heterogeneous Materials by Machine Learning Enabled Contact Kelvin Probe Force Microscopy. ACS Applied Electronic Materials, 2021, 3, 4409-4417.	4.3	3
64	Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy [*] . Machine Learning: Science and Technology, 2021, 2, 045028.	5.0	5
65	Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control. Npj Computational Materials, 2021, 7, .	8.7	6
66	Probing polarization dynamics at specific domain configurations: Computer-vision based automated experiment in piezoresponse force microscopy. Applied Physics Letters, 2021, 119, .	3.3	5
67	Probing Metastable Domain Dynamics <i>via</i> Automated Experimentation in Piezoresponse Force Microscopy. ACS Nano, 2021, 15, 15096-15103.	14.6	6
68	Identification and correction of temporal and spatial distortions in scanning transmission electron microscopy. Ultramicroscopy, 2021, 229, 113337.	1.9	6
69	Unraveling the hysteretic behavior at double cations-double halides perovskite - electrode interfaces. Nano Energy, 2021, 89, 106428.	16.0	11
70	Distilling nanoscale heterogeneity of amorphous silicon using tip-enhanced Raman spectroscopy (TERS) via multiresolution manifold learning. Nature Communications, 2021, 12, 578.	12.8	25
71	Machine learning for high-throughput experimental exploration of metal halide perovskites. Joule, 2021, 5, 2797-2822.	24.0	44
72	Exploring the physics of cesium lead halide perovskite quantum dots via Bayesian inference of the photoluminescence spectra in automated experiment. Nanophotonics, 2021, 10, 1977-1989.	6.0	15

#	Article	IF	Citations
73	Effect of Surface Ionic Screening on Polarization Reversal and Phase Diagrams in Thin Antiferroelectric Films for Information and Energy Storage. Physical Review Applied, 2021, 16, .	3.8	9
74	Defect detection in atomic-resolution images via unsupervised learning with translational invariance. Npj Computational Materials, 2021, 7, .	8.7	11
75	Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. Nanotechnology, 2021, 32, 035703.	2.6	10
76	Exploring electron beam induced atomic assembly via reinforcement learning in a molecular dynamics environment. Nanotechnology, 2021, , .	2.6	4
77	Multi-objective Bayesian optimization of ferroelectric materials with interfacial control for memory and energy storage applications. Journal of Applied Physics, 2021, 130, .	2.5	15
78	High-Throughput Study of Antisolvents on the Stability of Multicomponent Metal Halide Perovskites through Robotics-Based Synthesis and Machine Learning Approaches. Journal of the American Chemical Society, 2021, 143, 19945-19955.	13.7	35
79	Deep Bayesian local crystallography. Npj Computational Materials, 2021, 7, .	8.7	15
80	Selfâ€Assembled Room Temperature Multiferroic BiFeO ₃ â€LiFe ₅ O ₈ Nanocomposites. Advanced Functional Materials, 2020, 30, 1906849.	14.9	14
81	Possible electrochemical origin of ferroelectricity in HfO2 thin films. Journal of Alloys and Compounds, 2020, 830, 153628.	5 . 5	57
82	Tunable quadruple-well ferroelectric van der Waals crystals. Nature Materials, 2020, 19, 43-48.	27.5	140
83	Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data. Materials and Design, 2020, 195, 108973.	7.0	8
84	Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning. ACS Energy Letters, 2020, 5, 3426-3436.	17.4	66
85	Piezoelectric domain walls in van der Waals antiferroelectric CulnP2Se6. Nature Communications, 2020, 11, 3623.	12.8	47
86	The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. Npj Computational Materials, 2020, 6, .	8.7	181
87	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. ACS Nano, 2020, 14, 10569-10577.	14.6	14
88	Fast Scanning Probe Microscopy via Machine Learning: Nonâ∈Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. Small, 2020, 16, e2002878.	10.0	37
89	Super-resolution and signal separation in contact Kelvin probe force microscopy of electrochemically active ferroelectric materials. Journal of Applied Physics, 2020, 128, 055101.	2.5	6
90	Exploring phase transitions and magnetoelectric coupling of epitaxial asymmetric multilayer heterostructures. Journal of Materials Chemistry C, 2020, 8, 12113-12122.	5 . 5	8

#	Article	IF	CITATIONS
91	Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics. Physical Review B, 2020, 102, .	3.2	5
92	Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. Npj Computational Materials, 2020, 6, .	8.7	2
93	Causal analysis of competing atomistic mechanisms in ferroelectric materials from high-resolution scanning transmission electron microscopy data. Npj Computational Materials, 2020, 6, .	8.7	21
94	Flexoinduced ferroelectricity in low-dimensional transition metal dichalcogenides. Physical Review B, 2020, 102, .	3.2	15
95	Induced ferroelectric phases in SrTiO ₃ by a nanocomposite approach. Nanoscale, 2020, 12, 18193-18199.	5.6	15
96	Hysteretic Ion Migration and Remanent Field in Metal Halide Perovskites. Advanced Science, 2020, 7, 2001176.	11.2	29
97	Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging. Journal of Applied Physics, 2020, 128, 054105.	2.5	8
98	Operando Imaging of Ion Migration in Metal Halide Perovskites. Microscopy and Microanalysis, 2020, 26, 2046-2048.	0.4	0
99	Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data. Nature Communications, 2020, 11, 6361.	12.8	17
100	Piezoresponse amplitude and phase quantified for electromechanical characterization. Journal of Applied Physics, 2020, 128, .	2.5	31
101	Phenomenological description of bright domain walls in ferroelectric-antiferroelectric layered chalcogenides. Physical Review B, 2020, 102, .	3.2	10
102	Accurately Imaging, Tracking and Moving Single Atoms. Microscopy and Microanalysis, 2020, 26, 2556-2557.	0.4	0
103	Phase diagrams of single-layer two-dimensional transition metal dichalcogenides: Landau theory. Physical Review B, 2020, 101, .	3.2	7
104	Room temperature multiferroicity and magnetodielectric coupling in $0 \hat{a} \in 3$ composite thin films. Journal of Applied Physics, 2020, 127, .	2.5	16
105	Reconstruction of the interatomic forces from dynamic scanning transmission electron microscopy data. Journal of Applied Physics, 2020, 127, 224301.	2.5	2
106	Direct matter disassembly via electron beam control: electron-beam-mediated catalytic etching of graphene by nanoparticles. Nanotechnology, 2020, 31, 245303.	2.6	4
107	Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Diterfaces, 2020, 12, 15380-15388.	8.0	5
108	Alignment of Polarization against an Electric Field in van der Waals Ferroelectrics. Physical Review Applied, 2020, 13, .	3.8	34

#	Article	IF	CITATIONS
109	Ordering with a twist. Nature Nanotechnology, 2020, 15, 515-516.	31.5	2
110	Guided search for desired functional responses via Bayesian optimization of generative model: Hysteresis loop shape engineering in ferroelectrics. Journal of Applied Physics, 2020, 128, .	2.5	9
111	Reconstruction of effective potential from statistical analysis of dynamic trajectories. AIP Advances, 2020, 10, .	1.3	4
112	Strain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3thin films. Applied Materials Today, 2020, 20, 100740.	4.3	7
113	Exploration of Electrochemical Reactions at Organic–Inorganic Halide Perovskite Interfaces via Machine Learning in In Situ Timeâ€ofâ€Flight Secondary Ion Mass Spectrometry. Advanced Functional Materials, 2020, 30, 2001995.	14.9	30
114	Machine learning-based multidomain processing for texture-based image segmentation and analysis. Applied Physics Letters, 2020, 116 , .	3.3	19
115	High-Pressure, High-Temperature Synthesis and Characterization of Polar and Magnetic LuCrWO ₆ . Inorganic Chemistry, 2020, 59, 3579-3584.	4.0	9
116	Strain–Chemical Gradient and Polarization in Metal Halide Perovskites. Advanced Electronic Materials, 2020, 6, 1901235.	5.1	19
117	Electron-beam introduction of heteroatomic Pt–Si structures in graphene. Carbon, 2020, 161, 750-757.	10.3	34
118	Variable voltage electron microscopy: Toward atom-by-atom fabrication in 2D materials. Ultramicroscopy, 2020, 211, 112949.	1.9	14
119	Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling. Npj Computational Materials, 2020, 6, .	8.7	19
120	Estimating Preisach Density via Subset Selection. IEEE Access, 2020, 8, 61767-61774.	4.2	1
121	Exploration of lattice Hamiltonians for functional and structural discovery via Gaussian process-based exploration–exploitation. Journal of Applied Physics, 2020, 128, 164304.	2.5	8
122	Reconstruction and uncertainty quantification of lattice Hamiltonian model parameters from observations of microscopic degrees of freedom. Journal of Applied Physics, 2020, 128, 214103.	2.5	2
123	Deep learning of interface structures from simulated 4D STEM data: cation intermixing vs. roughening <td>5.0</td> <td>6</td>	5.0	6
124	Mesoscopic structure of mixed type domain walls in multiaxial ferroelectrics. Physical Review Materials, 2020, 4, .	2.4	3
125	Detection of defects in atomic-resolution images of materials using cycle analysis. Advanced Structural and Chemical Imaging, 2020, 6, .	4.0	11
126	Mesoscopic theory of defect ordering–disordering transitions in thin oxide films. Scientific Reports, 2020, 10, 22377.	3.3	0

#	Article	IF	CITATIONS
127	Bayesian Microscopy: Model Selection for Extracting Weak Nonlinearities from Scanning Probe Microscopy Data. Microscopy and Microanalysis, 2020, 26, 2126-2127.	0.4	O
128	Spectral Map Reconstruction Using Pan-Sharpening Algorithm: Enhancing Chemical Imaging with AFM-IR. Microscopy and Microanalysis, 2019, 25, 1024-1025.	0.4	2
129	Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. Microscopy and Microanalysis, 2019, 25, 2076-2077.	0.4	3
130	A STEM-based Path Towards Atomic-scale Silicon-based Devices. Microscopy and Microanalysis, 2019, 25, 2290-2291.	0.4	0
131	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	14.6	32
132	Building ferroelectric from the bottom up: The machine learning analysis of the atomic-scale ferroelectric distortions. Applied Physics Letters, 2019, 115, .	3.3	20
133	Statistical Physics-based Framework and Bayesian Inference for Model Selection and Uncertainty Quantification. Microscopy and Microanalysis, 2019, 25, 130-131.	0.4	3
134	Non-conventional mechanism of ferroelectric fatigue via cation migration. Nature Communications, 2019, 10, 3064.	12.8	23
135	Lab on a beamâ€"Big data and artificial intelligence in scanning transmission electron microscopy. MRS Bulletin, 2019, 44, 565-575.	3.5	24
136	Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Communications, 2019, 9, 821-838.	1.8	109
137	Ferromagnetic-like behavior of Bi0.9La0.1FeO3–KBr nanocomposites. Scientific Reports, 2019, 9, 10417.	3.3	10
138	Revealing ferroelectric switching character using deep recurrent neural networks. Nature Communications, 2019, 10, 4809.	12.8	34
139	Spatially Resolved Carrier Dynamics at MAPbBr ₃ Single Crystal–Electrode Interface. ACS Applied Materials & Description of the Applied Materials & Description of	8.0	23
140	Ferroic twin domains in metal halide perovskites. MRS Advances, 2019, 4, 2817-2830.	0.9	7
141	From Control of the Electron Beam to Control of Single Atoms. Microscopy and Microanalysis, 2019, 25, 1678-1679.	0.4	0
142	The ORNL Lectures on Scanning Probe Microscopy, Part 1: Piezoresponse Force Microscopy and Spectroscopy of Ferroelectrics, Energy Materials, and Biological Systems. Microscopy Today, 2019, 27, 12-16.	0.3	0
143	The ORNL Lectures on Scanning Probe Microscopy, Part 2: The Force Dimension: Electronic and Ionic Transport Measurements via Kelvin Probe Force Microscopy. Microscopy Today, 2019, 27, 18-23.	0.3	0
144	Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials, 2019, 7, 1901451.	7.3	24

#	Article	IF	CITATIONS
145	A self-driving microscope and the Atomic Forge. MRS Bulletin, 2019, 44, 669-670.	3.5	17
146	Unsupervised Machine Learning to Distill Structural-Property Insights from 4D-STEM. Microscopy and Microanalysis, 2019, 25, 12-13.	0.4	0
147	Structure retrieval from four-dimensional scanning transmission electron microscopy: Statistical analysis of potential pitfalls in high-dimensional data. Physical Review E, 2019, 100, 023308.	2.1	2
148	Competing phases in epitaxial vanadium dioxide at nanoscale. APL Materials, 2019, 7, .	5.1	8
149	Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study. Science Advances, 2019, 5, eaaw8989.	10.3	70
150	Towards Atomic Scale Quantum Structure Fabrication in 2D Materials. Microscopy and Microanalysis, 2019, 25, 940-941.	0.4	0
151	Ferroelectric domain engineering of lithium niobate single crystal confined in glass. MRS Communications, 2019, 9, 334-339.	1.8	9
152	Materials informatics: From the atomic-level to the continuum. Acta Materialia, 2019, 168, 473-510.	7.9	108
153	Intrinsic structural instabilities of domain walls driven by gradient coupling: Meandering antiferrodistortive-ferroelectric domain walls inBiFeO3. Physical Review B, 2019, 99, .	3.2	22
154	Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. Npj Computational Materials, 2019, 5, .	8.7	113
155	Atom-by-atom fabrication with electron beams. Nature Reviews Materials, 2019, 4, 497-507.	48.7	73
156	Building a free-energy functional from atomically resolved imaging: Atomic-scale phenomena in La-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiFe</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> .	n 8. 2	11
157	Physical Review B, 2019, 99, . Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 2019, 5, .	8.7	9
158	Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning. Electrochimica Acta, 2019, 313, 570-583.	5.2	68
159	Polarization-dependent local conductivity and activation energy in KTiOPO4. Applied Physics Letters, 2019, 114, .	3.3	3
160	Exact, approximate and asymptotic solutions of the Klein–Gordon integral equation. Journal of Engineering Mathematics, 2019, 115, 141-156.	1.2	3
161	Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy. Npj Computational Materials, 2019, 5, .	8.7	43
162	Environmental Gating and Galvanic Effects in Single Crystals of Organic–Inorganic Halide Perovskites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14722-14733.	8.0	14

#	Article	IF	Citations
163	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	14.6	38
164	Materials and Devices with Probes and Beams: Down to the Atomic Level and Back Up. Advanced Functional Materials, 2019, 29, 1908267.	14.9	3
165	Atomic Mechanisms for the Si Atom Dynamics in Graphene: Chemical Transformations at the Edge and in the Bulk. Advanced Functional Materials, 2019, 29, 1904480.	14.9	25
166	Reply to: On the ferroelectricity of CH3NH3PbI3 perovskites. Nature Materials, 2019, 18, 1051-1053.	27.5	21
167	Learning from Imperfections: Predicting Structure and Thermodynamics from Atomic Imaging of Fluctuations. ACS Nano, 2019, 13, 718-727.	14.6	24
168	Manifold learning of four-dimensional scanning transmission electron microscopy. Npj Computational Materials, 2019, 5, .	8.7	37
169	Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Physical Review Materials, 2019, 3, .	2.4	47
170	Nanoscale Transport Imaging of Active Lateral Devices: Static and Frequency Dependent Modes. Springer Series in Surface Sciences, 2018, , 251-329.	0.3	3
171	Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology, 2018, 29, 255303.	2.6	46
172	Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence. Npj Computational Materials, 2018, 4, .	8.7	15
173	Dynamic mechanical control of local vacancies in NiO thin films. Nanotechnology, 2018, 29, 275709.	2.6	8
174	Subtractive fabrication of ferroelectric thin films with precisely controlled thickness. Nanotechnology, 2018, 29, 155302.	2.6	7
175	Ultrafast current imaging by Bayesian inversion. Nature Communications, 2018, 9, 513.	12.8	14
176	Chemical Phenomena of Atomic Force Microscopy Scanning. Analytical Chemistry, 2018, 90, 3475-3481.	6.5	20
177	Photothermoelastic contrast in nanoscale infrared spectroscopy. Applied Physics Letters, 2018, 112, 033105.	3.3	8
178	Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. Advanced Materials, 2018, 30, 1705298.	21.0	44
179	Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Reports on Progress in Physics, 2018, 81, 036502.	20.1	129
180	Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	32

#	Article	IF	Citations
181	Defect-driven flexochemical coupling in thin ferroelectric films. Physical Review B, 2018, 97, .	3.2	39
182	YCrWO ₆ : Polar and Magnetic Oxide with CaTa ₂ O ₆ -Related Structure. Chemistry of Materials, 2018, 30, 1045-1054.	6.7	22
183	Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. Advanced Structural and Chemical Imaging, 2018, 4, 3.	4.0	31
184	Nontrivial temperature behavior of the carrier concentration in graphene on ferroelectric substrate with domain walls. Acta Materialia, 2018, 155, 302-317.	7.9	16
185	Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Science Advances, 2018, 4, eaap8672.	10.3	54
186	Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides. Journal of Applied Physics, 2018, 123, .	2.5	29
187	Dynamic Modes in Kelvin Probe Force Microscopy: Band Excitation and G-Mode. Springer Series in Surface Sciences, 2018, , 49-99.	0.3	3
188	Interaction between a punch and an arbitrary crack or inclusion in a transversely isotropic half-space. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	3
189	Direct Probing of Polarization Charge at Nanoscale Level. Advanced Materials, 2018, 30, 1703675.	21.0	23
190	Graphene Defect Editing, Deposition, and Growth via E-Beam-Induced Organic Reactions in Aberration Corrected STEM. Microscopy and Microanalysis, 2018, 24, 1994-1995.	0.4	1
191	Multimodal Chemical and Functional Imaging of Nanoscale Transformations Away from Equilibrium. Microscopy and Microanalysis, 2018, 24, 1042-1043.	0.4	0
192	167-PFlops Deep Learning for Electron Microscopy: From Learning Physics to Atomic Manipulation. , 2018, , .		18
193	Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS Applied Materials & Diterfaces, 2018, 10, 43211-43218.	8.0	21
194	Correlated Materials Characterization <i>via</i> Multimodal Chemical and Functional Imaging. ACS Nano, 2018, 12, 11798-11818.	14.6	28
195	Exploring the Magnetoelectric Coupling at the Composite Interfaces of FE/FM/FE Heterostructures. Scientific Reports, 2018, 8, 17381.	3.3	26
196	Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric–Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning. ACS Applied Materials & Logical Response (2018, 10, 42674-42680.	8.0	8
197	Towards Atomic-Scale Fabrication in Silicon. Microscopy and Microanalysis, 2018, 24, 158-159.	0.4	0
198	Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans. Microscopy and Microanalysis, 2018, 24, 623-633.	0.4	34

#	Article	IF	Citations
199	Deep Data Analytics in Structural and Functional Imaging of Nanoscale Materials. Springer Series in Materials Science, 2018, , 103-128.	0.6	3
200	Nanoscale Electrochemical Phenomena of Polarization Switching in Ferroelectrics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38217-38222.	8.0	18
201	Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure. Physical Review B, 2018, 98, .	3.2	35
202	Giant resistive switching in mixed phase BiFeO ₃ <i>via</i> phase population control. Nanoscale, 2018, 10, 17629-17637.	5.6	18
203	Control of polarization reversal temperature behavior by surface screening in thin ferroelectric films. Acta Materialia, 2018, 160, 57-71.	7.9	17
204	Elasticity Modulation Due to Polarization Reversal and Ionic Motion in the Ferroelectric Superionic Conductor KTiOPO ₄ . ACS Applied Materials & Interfaces, 2018, 10, 32298-32303.	8.0	11
205	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr _{0.2} Ti _{0.8} O ₃ Thin Films. Advanced Materials, 2018, 30, e1800701.	21.0	23
206	High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. Nature Communications, 2018, 9, 2428.	12.8	12
207	Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. Npj Computational Materials, 2018, 4, .	8.7	31
208	Surface Chemistry Controls Anomalous Ferroelectric Behavior in Lithium Niobate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29153-29160.	8.0	20
209	Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological transition. Physical Review B, 2018, 98, .	3.2	35
210	Locally Controlled Cu-lon Transport in Layered Ferroelectric CulnP ₂ S ₆ . ACS Applied Materials & Samp; Interfaces, 2018, 10, 27188-27194.	8.0	68
211	Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Reports on Progress in Physics, 2018, 81, 086101.	20.1	70
212	E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Research, 2018, 11, 6217-6226.	10.4	21
213	Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform. Advanced Structural and Chemical Imaging, 2018, 4, 6.	4.0	45
214	Atom-by-Atom Assembly in Aberration Corrected STEM and the Role of Chemistry at the Surface of Graphene. Microscopy and Microanalysis, 2018, 24, 326-327.	0.4	0
215	Automated Atom-by-Atom Assembly of Structures in Graphene: The Rise of STEM for Atomic Scale Control. Microscopy and Microanalysis, 2018, 24, 1594-1595.	0.4	0
216	Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene. 2D Materials, 2018, 5, 041008.	4.4	5

#	Article	IF	CITATIONS
217	Building Structures Atom by Atom via Electron Beam Manipulation. Small, 2018, 14, e1801771.	10.0	81
218	Chemical nature of ferroelastic twin domains in CH3NH3Pbl3 perovskite. Nature Materials, 2018, 17, 1013-1019.	27.5	183
219	Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters, 2018, 113, .	3.3	27
220	Time resolved surface photovoltage measurements using a big data capture approach to KPFM. Nanotechnology, 2018, 29, 445703.	2.6	36
221	Nanoscale Control of Oxygen Defects and Metal–Insulator Transition in Epitaxial Vanadium Dioxides. ACS Nano, 2018, 12, 7159-7166.	14.6	41
222	Graphene milling dynamics during helium ion beam irradiation. Carbon, 2018, 138, 277-282.	10.3	18
223	Feel the dielectric force. Science, 2018, 360, 1302-1302. Giant thermally-enhanced electrostriction and polar surface phase in <mml:math< td=""><td>12.6</td><td>15</td></mml:math<>	12.6	15
224	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi mathvariant="normal">a<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">M<mml:msub><mml:mi< td=""><td>2.4</td><td>12</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	2.4	12
225	matrivariant="normal" > (/mml:mi> <mml:msub><mml:msub><mml:msub><mml:mi "http:="" 1998="" <mml:math="" by="" electronic="" in="" math="" mathml"="" matrivarian="" metastable="" polarization="" states="" switching="" www.w3.org=""><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiFe</mml:mi><mml:msub><mml:r mathvariant="normal">O</mml:r></mml:msub></mml:mrow></mml:math></mml:mi><mml:mn>3</mml:mn></mml:msub> thin Surfacehredonistructions and modified surface states in <mml:math< td=""><td>ni 2.4</td><td>5</td></mml:math<></mml:msub></mml:msub>	ni 2.4	5
226	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi mathvariant="normal">a<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>xmathvariant="normal">C</mml:mi><mml:msub><mml:mi< td=""><td>nl:mi><td>m1:mrow><!--</td--></td></td></mml:mi<></mml:msub></mml:mrow></mml:mi </mml:msub></mml:mi </mml:mrow>	nl:mi> <td>m1:mrow><!--</td--></td>	m1:mrow> </td
227	mathvariant="normal">a <mml:mi>x</mml:mi> <mml:mi>Mn</mml:mi> <mml:msub><mm Making a point of control. Nature Physics, 2017, 13, 115-116.</mm </mml:msub>	l:mi 16.7	7
228	Localised nanoscale resistive switching in GaP thin films with low power consumption. Journal of Materials Chemistry C, 2017, 5, 2153-2159.	5.5	7
229	Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films. Journal of Physical Chemistry C, 2017, 121, 8841-8849.	3.1	44
230	Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions. Nanoscale, 2017, 9, 5708-5717.	5.6	9
231	Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nature Physics, 2017, 13, 812-818.	16.7	98
232	Ferroelectric or non-ferroelectric: Why so many materials exhibit "ferroelectricity―on the nanoscale. Applied Physics Reviews, 2017, 4, .	11.3	240
233	Piezoresponse of ferroelectric films in ferroionic states: Time and voltage dynamics. Applied Physics Letters, 2017, 110, 182907.	3.3	16
234	Emergent Lowâ€Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO ₃ Bulk Crystals. Advanced Materials, 2017, 29, 1700530.	21.0	26

#	Article	IF	Citations
235	Spatially Resolved Large Magnetization in Ultrathin BiFeO ₃ . Advanced Materials, 2017, 29, 1700790.	21.0	29
236	Probing the solid–liquid interface. Nature Materials, 2017, 16, 704-705.	27.5	7
237	Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites. Applied Physics Letters, 2017, 110 , .	3.3	13
238	Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine. Advanced Functional Materials, 2017, 27, 1700749.	14.9	74
239	<i>In Situ</i> Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO ₃ System. ACS Nano, 2017, 11, 6942-6949.	14.6	89
240	Exploring Electro-Chemo-Mechanical Phenomena on the Nanoscale Using Scanning Probe Microscopy. Kluwer International Series in Electronic Materials: Science and Technology, 2017, , 137-160.	0.5	0
241	Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensileâ€Strained Film. Advanced Electronic Materials, 2017, 3, 1600508.	5.1	7
242	Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways. Scientific Reports, 2017, 7, 43585.	3.3	23
243	Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology, 2017, 28, 065704.	2.6	43
244	Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40949-40958.	8.0	24
245	Knowledge Extraction from Atomically Resolved Images. ACS Nano, 2017, 11, 10313-10320.	14.6	30
246	Electronicâ€Reconstructionâ€Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films. Advanced Materials, 2017, 29, 1702001.	21.0	7
247	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^²</mml:mtext><mml:mi>n</mml:mi></mml:mrow></mml:math></pre>	nrow> <td>ml:math> 22</td>	ml:math> 22
248	Placing single atoms in graphene with a scanning transmission electron microscope. Applied Physics Letters, 2017, 111, .	3.3	119
249	Atom-by-atom fabrication by electron beam via induced phase transformations. MRS Bulletin, 2017, 42, 653-659.	3.5	18
250	Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bulletin, 2017, 42, 637-643.	3 . 5	28
251	Consistent Integration of Experimental and Ab Initio Data into Effective Physical Models. Journal of Chemical Theory and Computation, 2017, 13, 5179-5194.	5.3	14
252	Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity. Nature Communications, 2017, 8, 615.	12.8	93

#	Article	IF	Citations
253	Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films. Journal of Applied Physics, 2017, 122, 033902.	2.5	13
254	Full Information Acquisition in Scanning Probe Microscopy. Microscopy Today, 2017, 25, 34-45.	0.3	3
255	Nanoscale Probing of Elastic–Electronic Response to Vacancy Motion in NiO Nanocrystals. ACS Nano, 2017, 11, 8387-8394.	14.6	9
256	Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity. Scientific Reports, 2017, 7, 949.	3.3	13
257	Tuning the polar states of ferroelectric films via surface charges and flexoelectricity. Acta Materialia, 2017, 137, 85-92.	7.9	51
258	Threeâ€State Ferroelastic Switching and Large Electromechanical Responses in PbTiO ₃ Thin Films. Advanced Materials, 2017, 29, 1702069.	21.0	74
259	Learning surface molecular structures via machine vision. Npj Computational Materials, 2017, 3, .	8.7	79
260	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. ACS Nano, 2017, 11, 8717-8729.	14.6	67
261	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. Microscopy and Microanalysis, 2017, 23, 2080-2081.	0.4	0
262	Automated Interpretation and Extraction of Topographic Information from Time of Flight Secondary Ion Mass Spectrometry Data. Scientific Reports, 2017, 7, 17099.	3.3	21
263	Magnetostriction-polarization coupling in multiferroic Mn2MnWO6. Nature Communications, 2017, 8, 2037.	12.8	40
264	Multimodal Chemical and Functional Imaging of Nanoscale Transformations in Ferroelectric Thin Films. Microscopy and Microanalysis, 2017, 23, 1620-1621.	0.4	0
265	Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS Nano, 2017, 11, 12742-12752.	14.6	282
266	Effect of surface ionic screening on the polarization reversal scenario in ferroelectric thin films: Crossover from ferroionic to antiferroionic states. Physical Review B, 2017, 96, .	3.2	26
267	Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics. Physical Review B, 2017, 96, .	3.2	44
268	Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Decodi	8.0	6
269	Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. Nature Communications, 2017, 8, 1468.	12.8	93
270	Field enhancement of electronic conductance at ferroelectric domain walls. Nature Communications, 2017, 8, 1318.	12.8	32

#	Article	IF	CITATIONS
271	Lost surface waves in nonpiezoelectric solids. Physical Review B, 2017, 96, .	3.2	23
272	Ferroionic states in ferroelectric thin films. Physical Review B, 2017, 95, .	3.2	57
273	ToF-SIMS Investigations of Tip-Surface Chemical Interactions in Atomic Force Microscopy on a Combined AFM/ToF-SIMS Platform. Microscopy and Microanalysis, 2017, 23, 2082-2083.	0.4	0
274	G-mode - Full Information Capture Applied to Scanning Probe Microscopy. Microscopy and Microanalysis, 2017, 23, 184-185.	0.4	1
275	A Framework to Learn Physics from Atomically Resolved Images. Microscopy and Microanalysis, 2017, 23, 104-105.	0.4	0
276	Flexoelectric Effect Impact on the Hysteretic Dynamics of the Local Electromechanical Response of Mixed Ionic-Electronic Conductors. Ukrainian Journal of Physics, 2017, 62, 326-334.	0.2	2
277	Deep Data Mining in a Real Space: Application to Scanning Probe Microscopy Studies on a "Parent― State of a High Temperature Superconductor. Microscopy and Microanalysis, 2016, 22, 1418-1419.	0.4	0
278	Local Crystallography for Quantitative Analysis of Atomically Resolved Images. Microscopy and Microanalysis, 2016, 22, 948-949.	0.4	0
279	Phase determination from atomically resolved images: physics-constrained deep data analysis through an unmixing approach. Microscopy and Microanalysis, 2016, 22, 1452-1453.	0.4	0
280	Atomic Level Structure-Property Relationship in a Spin-Orbit Mott insulator: Scanning Transmission Electron and Scanning Tunneling Microscopy Studies. Microscopy and Microanalysis, 2016, 22, 908-909.	0.4	0
281	Local Probing of Ferroelectric and Ferroelastic Switching through Stressâ€Mediated Piezoelectric Spectroscopy. Advanced Materials Interfaces, 2016, 3, 1500470.	3.7	17
282	Nanosculpting of complex oxides by massive ionic transfer. Nanotechnology, 2016, 27, 505703.	2.6	1
283	Local coexistence of VO2 phases revealed by deep data analysis. Scientific Reports, 2016, 6, 29216.	3.3	8
284	Big, deep, and smart data from atomically resolved images: exploring the origins of materials functionality. Microscopy and Microanalysis, 2016, 22, 1416-1417.	0.4	0
285	High Performance Computing Tools for Cross Correlation of Multi-Dimensional Data Sets Across Instrument Platforms. Microscopy and Microanalysis, 2016, 22, 288-289.	0.4	0
286	Growth and In Situ Characterization of Oxide Epitaxial Heterostructures with Atomic Plane Precision. Microscopy and Microanalysis, 2016, 22, 1504-1505.	0.4	0
287	Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology, 2016, 27, 425707.	2.6	92
288	Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe ₂ As ₂ . Nanotechnology, 2016, 27, 475706.	2.6	21

#	Article	IF	Citations
289	Analysis of citation networks as a new tool for scientific research. MRS Bulletin, 2016, 41, 1009-1016.	3.5	8
290	Piezoelectric response enhancement in the proximity of grain boundaries of relaxor-ferroelectric thin films. Applied Physics Letters, 2016, 108, 242908.	3.3	4
291	Atomic-scale observation of structural and electronic orders in the layered compound \hat{l}_{\pm} -RuCl3. Nature Communications, 2016, 7, 13774.	12.8	66
292	Size-effect in layered ferrielectric CuInP2S6. Applied Physics Letters, 2016, 109, .	3.3	66
293	Rapid mapping of polarization switching through complete information acquisition. Nature Communications, 2016, 7, 13290.	12.8	21
294	Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nature Communications, 2016, 7, 11630.	12.8	81
295	Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films. Physical Review B, 2016, 94, .	3.2	22
296	Characterization of LiMn2O4 cathodes by electrochemical strain microscopy. Applied Physics Letters, 2016, 108, .	3.3	24
297	Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy. Applied Physics Letters, 2016, 108, .	3.3	17
298	G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics. Applied Physics Letters, $2016, 108, \ldots$	3.3	24
299	Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography. Scientific Reports, 2016, 6, 26348.	3.3	62
300	Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Applied Physics Letters, $2016,108,.$	3.3	3
301	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	14.6	99
302	Role of Associated Defects in Oxygen Ion Conduction and Surface Exchange Reaction for Epitaxial Samaria-Doped Ceria Thin Films as Catalytic Coatings. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14613-14621.	8.0	39
303	Polarization Control via He-lon Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors. ACS Applied Materials & Semiconductors.	8.0	19
304	Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach. Nanoscale, 2016, 8, 13838-13858.	5.6	27
305	Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy. Nanotechnology, 2016, 27, 414003.	2.6	14
306	BEAM: A Computational Workflow System for Managing and Modeling Material Characterization Data in HPC Environments. Procedia Computer Science, 2016, 80, 2276-2280.	2.0	17

#	Article	IF	Citations
307	Big, Deep, and Smart Data in Scanning Probe Microscopy. ACS Nano, 2016, 10, 9068-9086.	14.6	103
308	Impact of Flexoelectric Effect on Electro-mechanics of Moderate Conductors., 2016, , 265-283.		1
309	Flexoelectricity Impact on the Domain Wall Structure and Polar Properties. , 2016, , 311-336.		2
310	Chemical State Evolution in Ferroelectric Films during Tip-Induced Polarization and Electroresistive Switching. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29588-29593.	8.0	33
311	Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale, 2016, 8, 15581-15588.	5.6	29
312	Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis. Nano Letters, 2016, 16, 5574-5581.	9.1	40
313	Dynamic scan control in STEM: spiral scans. Advanced Structural and Chemical Imaging, 2016, 2, .	4.0	59
314	Exploring Polarization Rotation Instabilities in Superâ€Tetragonal BiFeO ₃ Epitaxial Thin Films and Their Technological Implications. Advanced Electronic Materials, 2016, 2, 1600307.	5.1	9
315	Enhancing interfacial magnetization with a ferroelectric. Physical Review B, 2016, 94, .	3.2	34
316	Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics. Physical Review B, 2016, 93, .	3.2	13
317	Electrochemical reactivity and proton transport mechanisms in nanostructured ceria. Nanotechnology, 2016, 27, 345401.	2.6	7
318	Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy. Scientific Reports, 2016, 6, 32389.	3.3	57
319	Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space. Scientific Reports, 2016, 6, 30557.	3.3	47
320	Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology, 2016, 27, 495703.	2.6	18
321	Contradictory nature of Co doping in ferroelectricBaTiO3. Physical Review B, 2016, 94, .	3.2	8
322	Single-domain multiferroic BiFeO3 films. Nature Communications, 2016, 7, 12712.	12.8	92
323	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. Scientific Reports, 2016, 6, 30481.	3.3	82
324	Atomic intercalation to measure adhesion of graphene on graphite. Nature Communications, 2016, 7, 13263.	12.8	35

#	Article	IF	Citations
325	Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure. Physical Review B, 2016, 94, .	3.2	32
326	Combined Scanning Probe Microscopy and Confocal Raman Spectroscopy for Functional Imaging of the Layered Materials. Microscopy and Microanalysis, 2016, 22, 218-219.	0.4	1
327	Acoustic Detection of Phase Transitions at the Nanoscale. Advanced Functional Materials, 2016, 26, 478-486.	14.9	28
328	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	19.5	117
329	Growth Mode Transition in Complex Oxide Heteroepitaxy: Atomically Resolved Studies. Crystal Growth and Design, 2016, 16, 2708-2716.	3.0	13
330	Nanoparticle Shape Evolution and Proximity Effects During Tip-Induced Electrochemical Processes. ACS Nano, 2016, 10, 663-671.	14.6	11
331	Graphene engineering by neon ion beams. Nanotechnology, 2016, 27, 125302.	2.6	21
332	Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. Nanotechnology, 2016, 27, 105706.	2.6	36
333	Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids. ACS Nano, 2016, 10, 3562-3570.	14.6	47
334	Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nature Materials, 2016, 15, 549-556.	27.5	98
335	Topological Defects in Ferroic Materials. Springer Series in Materials Science, 2016, , 181-197.	0.6	2
336	Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor–ferroelectric ceramic composites. Nanoscale, 2016, 8, 2168-2176.	5.6	33
337	Fire up the atom forge. Nature, 2016, 539, 485-487.	27.8	79
338	Piezoresponse Force Microscopy and Spectroscopy. , 2016, , 3252-3263.		0
339	Patterning: Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). Small, 2015, 11, 5854-5854.	10.0	2
340	Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. Physical Review B, 2015 , 92 , .	3.2	29
341	Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces. Scientific Reports, 2015, 5, 17229.	3.3	35
342	Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Applied Physics Letters, 2015, 107, .	3.3	25

#	Article	IF	Citations
343	Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions. Applied Physics Letters, 2015, 107, 022903.	3.3	4
344	Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes. Journal of Applied Physics, 2015, 118, .	2.5	15
345	Full information acquisition in piezoresponse force microscopy. Applied Physics Letters, 2015, 107, 263102.	3.3	28
346	Point force and point electric charge applied to the boundary of three-dimensional anisotropic piezoelectric solid. Journal of Applied Physics, 2015, 118, .	2.5	2
347	A bridge for accelerating materials by design. Npj Computational Materials, 2015, 1, .	8.7	47
348	Current and surface charge modified hysteresis loops in ferroelectric thin films. Journal of Applied Physics, 2015, 118, .	2.5	60
349	Multidimensional dynamic piezoresponse measurements: Unraveling local relaxation behavior in relaxor-ferroelectrics via big data. Journal of Applied Physics, 2015, 118, .	2.5	17
350	Moving atomic-resolution imaging into the age of deep data. Microscopy and Microanalysis, 2015, 21, 1607-1608.	0.4	0
351	Deep Data Analysis of Atomic Level Structure-Property Relationship in an Iron Superconductor Fe 105 Te 075 Se 025. Microscopy and Microanalysis, 2015, 21, 2345-2346.	0.4	0
352	Coupling of electrical and mechanical switching in nanoscale ferroelectrics. Applied Physics Letters, 2015, 107, .	3.3	21
353	Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films. APL Materials, 2015, 3, 036106.	5.1	3
354	Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate. Journal of Applied Physics, 2015, 118 , .	2.5	17
355	Atomic‣evel Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	10.0	73
356	Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field. Advanced Functional Materials, 2015, 25, 805-811.	14.9	13
357	Quantitative Nanometerâ€Scale Mapping of Dielectric Tunability. Advanced Materials Interfaces, 2015, 2, 1500088.	3.7	7
358	Kelvin probe force microscopy in liquid using electrochemical force microscopy. Beilstein Journal of Nanotechnology, 2015, 6, 201-214.	2.8	38
359	Local Crystallography: Phases, Symmetries, and Defects from Bottom Up. Microscopy and Microanalysis, 2015, 21, 2203-2204.	0.4	1

Role of chalcogen vapor annealing in inducing bulk superconductivity in<mml:math
360 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mrow>2<mml:mmo>1</mm
Physical Review B, 2015, 91, .

#	Article	IF	Citations
361	Data encoding based on the shape of the ferroelectric domains produced by using a scanning probe microscope tip. Nanoscale, 2015, 7, 11040-11047.	5.6	11
362	Spatially Resolved Probing of Electrochemical Reactions via Energy Discovery Platforms. Nano Letters, 2015, 15, 3669-3676.	9.1	25
363	Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, 2015, 9, 6484-6492.	14.6	231
364	Atomic-scale electrochemistry on the surface of a manganite by scanning tunneling microscopy. Applied Physics Letters, 2015, 106, .	3.3	17
365	Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters, 2015, 106, .	3.3	42
366	Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field. Scientific Reports, 2015, 5, 8049.	3.3	23
367	A-site stoichiometry and piezoelectric response in thin film PbZr1â^xTixO3. Journal of Applied Physics, 2015, 117, 204104.	2.5	13
368	Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric. Physical Review B, 2015, 91, .	3.2	17
369	Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Advanced Structural and Chemical Imaging, 2015, 1, 6.	4.0	74
370	The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and ⟨i⟩in situ⟨/i⟩scanning tunneling microscopy approach. Nanotechnology, 2015, 26, 455705.	2.6	8
371	Electrocatalysis-induced elasticity modulation in a superionic proton conductor probed by band-excitation atomic force microscopy. Nanoscale, 2015, 7, 20089-20094.	5.6	5
372	Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Applied Physics Letters, 2015, 106 , .	3.3	49
373	Probing Local Bias-Induced Transitions Using Photothermal Excitation Contact Resonance Atomic Force Microscopy and Voltage Spectroscopy. ACS Nano, 2015, 9, 1848-1857.	14.6	37
374	Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality. Nano Letters, 2015, 15, 1062-1069.	9.1	27
375	Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nature Communications, 2015, 6, 6067.	12.8	7 5
376	Complete information acquisition in dynamic force microscopy. Nature Communications, 2015, 6, 6550.	12.8	49
377	Surface Control of Epitaxial Manganite Films <i>via</i> Oxygen Pressure. ACS Nano, 2015, 9, 4316-4327.	14.6	27
378	Topological defects in electric double layers of ionic liquids at carbon interfaces. Nano Energy, 2015, 15, 737-745.	16.0	35

#	Article	IF	Citations
379	Ferroelectric switching by the grounded scanning probe microscopy tip. Physical Review B, 2015, 91, .	3.2	23
380	Bias assisted scanning probe microscopy direct write lithography enables local oxygen enrichment of lanthanum cuprates thin films. Nanotechnology, 2015, 26, 325302.	2.6	1
381	Identification of phases, symmetries and defects through local crystallography. Nature Communications, 2015, 6, 7801.	12.8	63
382	A review of molecular beam epitaxy of ferroelectric BaTiO ₃ films on Si, Ge and GaAs substrates and their applications. Science and Technology of Advanced Materials, 2015, 16, 036005.	6.1	89
383	Finite size effects in ferroelectric-semiconductor thin films under open-circuit electric boundary conditions. Journal of Applied Physics, 2015 , 117 , .	2.5	29
384	Defective Interfaces in Yttrium-Doped Barium Zirconate Films and Consequences on Proton Conduction. Nano Letters, 2015, 15, 2343-2349.	9.1	25
385	CulnP ₂ S ₆ Room Temperature Layered Ferroelectric. Nano Letters, 2015, 15, 3808-3814.	9.1	328
386	Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films. Physical Review B, 2015 , 91 , .	3.2	31
387	Domain Wall Motion Across Various Grain Boundaries in Ferroelectric Thin Films. Journal of the American Ceramic Society, 2015, 98, 1848-1857.	3.8	42
388	Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection. Nanotechnology, 2015, 26, 175707.	2.6	29
389	Big–deep–smart data in imaging for guiding materials design. Nature Materials, 2015, 14, 973-980.	27.5	281
390	Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. ACS Nano, 2015, 9, 11784-11791.	14.6	41
391	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	16.0	166
392	Band excitation Kelvin probe force microscopy utilizing photothermal excitation. Applied Physics Letters, 2015, 106, .	3.3	18
393	Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity. Applied Physics Letters, 2015, 106, .	3.3	35
394	Mesoscopic harmonic mapping of electromechanical response in a relaxor ferroelectric. Applied Physics Letters, 2015, 106, 222901.	3.3	9
395	Antisite defects in layered multiferroic CuCr _{0.9} In _{0.1} P ₂ S ₆ . Nanoscale, 2015, 7, 18579-18583.	5.6	8
396	Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nature Communications, 2015, 6, 8588.	12.8	145

#	Article	IF	CITATIONS
397	Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures. Nano Letters, 2015, 15, 6650-6657.	9.1	23
398	Focusing light on flexoelectricity. Nature Nanotechnology, 2015, 10, 916-917.	31.5	57
399	Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nature Communications, 2015, 6, 8985.	12.8	43
400	Quantitative Analysis of the Local Phase Transitions Induced by Laser Heating. ACS Nano, 2015, 9, 12442-12450.	14.6	27
401	Symmetry Breaking and Electrical Frustration during Tip-Induced Polarization Switching in the Nonpolar Cut of Lithium Niobate Single Crystals. ACS Nano, 2015, 9, 769-777.	14.6	58
402	Ion transport and softening in a polymerized ionic liquid. Nanoscale, 2015, 7, 947-955.	5.6	18
403	Piezoresponse Force Microscopy and Spectroscopy. , 2015, , 1-12.		0
404	Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis. APL Materials, 2014, 2, .	5.1	14
405	Microscopy: Hasten high resolution. Nature, 2014, 515, 487-488.	27.8	20
406	Effect of Doping on Surface Reactivity and Conduction Mechanism in Samarium-Doped Ceria Thin Films. ACS Nano, 2014, 8, 12494-12501.	14.6	34
407	Chemically induced Jahn–Teller ordering on manganite surfaces. Nature Communications, 2014, 5, 4528.	12.8	28
408	Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Japanese Journal of Applied Physics, 2014, 53, 08LE02.	1.5	318
409	Humidity effects on tip-induced polarization switching in lithium niobate. Applied Physics Letters, 2014, 104, 092908.	3.3	64
410	Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass. Applied Physics Letters, 2014, 105, 193106.	3.3	10
411	Reply to "Comment on â€~Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall'― Physical Review B, 2014, 89, .	3.2	3
412	Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies. Applied Physics Letters, 2014, 104, 232901.	3.3	44
413	Controlled mechnical modification of manganite surface with nanoscale resolution. Nanotechnology, 2014, 25, 475302.	2.6	8
414	Preface to Special Topic: Piezoresponse force microscopy and nanoscale phenomena in polar materials. Journal of Applied Physics, 2014, 116, 066701.	2.5	1

#	Article	IF	CITATIONS
415	Extracting physics through deep data analysis. Materials Today, 2014, 17, 416-417.	14.2	4
416	Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. Journal of Applied Physics, 2014, 116, 066808.	2.5	29
417	Effect of silver doping on the surface of La5/8Ca3/8MnO3 epitaxial films. Applied Physics Letters, 2014, 105, .	3.3	6
418	Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr _{1â€x} Ti _x O ₃ Epitaxial Thin Films. Advanced Materials Interfaces, 2014, 1, 1400098.	3.7	16
419	Fundamental limitation to the magnitude of piezoelectric response of ⟠001⟠©pc textured K0.5Na0.5NbO3 ceramic. Applied Physics Letters, 2014, 104, .	3.3	26
420	Interrelation between Structure – Magnetic Properties in La _{0.5} Sr _{0.5} CoO ₃ . Advanced Materials Interfaces, 2014, 1, 1400203.	3.7	20
421	<i>ln situ</i> examination of oxygen non-stoichiometry in La0.80Sr0.20CoO3â^Î thin films at intermediate and low temperatures by x-ray diffraction. Applied Physics Letters, 2014, 104, .	3.3	17
422	Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Caâ€Doped BiFeO ₃ . Advanced Materials, 2014, 26, 4376-4380.	21.0	66
423	Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy. Nature Communications, 2014, 5, 3871.	12.8	97
424	Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66.	16.7	129
425	Thermotropic phase boundaries in classic ferroelectrics. Nature Communications, 2014, 5, 3172.	12.8	123
426	Water-mediated electrochemical nano-writing on thin ceria films. Nanotechnology, 2014, 25, 075701.	2.6	12
427	Anomalous Photodeposition of Ag on Ferroelectric Surfaces with Belowâ€Bandgap Excitation. Advanced Optical Materials, 2014, 2, 292-299.	7. 3	3
428	Ferroelectric domain triggers the charge modulation in semiconductors (invited). Journal of Applied Physics, 2014, 116, 066817.	2.5	16
429	Ferroelectricity in Siâ€Doped HfO ₂ Revealed: A Binary Leadâ€Free Ferroelectric. Advanced Materials, 2014, 26, 8198-8202.	21.0	147
430	Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Applied Physics Letters, 2014, 104, .	3.3	31
431	Bond competition and phase evolution on the IrTe2 surface. Nature Communications, 2014, 5, 5358.	12.8	37
432	Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface. Applied Physics Letters, 2014, 104, .	3.3	50

#	Article	IF	Citations
433	Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity. ACS Nano, 2014, 8, 10229-10236.	14.6	123
434	Self-consistent modeling of electrochemical strain microscopy of solid electrolytes. Nanotechnology, 2014, 25, 445701.	2.6	22
435	Big-Data Reflection High Energy Electron Diffraction Analysis for Understanding Epitaxial Film Growth Processes. ACS Nano, 2014, 8, 10899-10908.	14.6	34
436	Direct observation of ferroelectric field effect andÂvacancy-controlled screening at the BiFeO3/LaxSr1â^2xMnO3 interface. Nature Materials, 2014, 13, 1019-1025.	27.5	218
437	lonic field effect and memristive phenomena in single-point ferroelectric domain switching. Nature Communications, 2014, 5, 4545.	12.8	48
438	Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals. Nanotechnology, 2014, 25, 435402.	2.6	19
439	Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nature Communications, 2014, 5, 4971.	12.8	35
440	Direct Probing of Charge Injection and Polarizationâ€Controlled Ionic Mobility on Ferroelectric LiNbO ₃ Surfaces. Advanced Materials, 2014, 26, 958-963.	21.0	49
441	Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging. Annual Review of Physical Chemistry, 2014, 65, 519-536.	10.8	97
442	Deep Data Analysis of Conductive Phenomena on Complex Oxide Interfaces: Physics from Data Mining. ACS Nano, 2014, 8, 6449-6457.	14.6	73
443	Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy. Fuel, 2014, 126, 32-37.	6.4	34
444	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	19.5	39
445	Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectrics. Advanced Functional Materials, 2014, 24, 1409-1417.	14.9	66
446	Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. Physical Review B, 2014, 89, .	3.2	28
447	Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit. Journal of Electroceramics, 2014, 32, 51-59.	2.0	20
448	Electrochemistry at the Nanoscale: The Force Dimension. Electrochemical Society Interface, 2014, 23, 53-59.	0.4	9
449	Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO. Scientific Reports, 2014, 4, 6725.	3.3	11
450	Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices. ACS Nano, 2013, 7, 6806-6815.	14.6	48

#	Article	IF	Citations
451	Probing Local Ionic Dynamics in Functional Oxides at the Nanoscale. Nano Letters, 2013, 13, 3455-3462.	9.1	55
452	Toward Quantitative Electrochemical Measurements on the Nanoscale by Scanning Probe Microscopy: Environmental and Current Spreading Effects. ACS Nano, 2013, 7, 8175-8182.	14.6	19
453	Oxygen Control of Atomic Structure and Physical Properties of SrRuO3 Surfaces. ACS Nano, 2013, 7, 4403-4413.	14.6	19
454	Domain Wall Conduction and Polarizationâ€Mediated Transport in Ferroelectrics. Advanced Functional Materials, 2013, 23, 2592-2616.	14.9	113
455	Mechanical Control of Electroresistive Switching. Nano Letters, 2013, 13, 4068-4074.	9.1	55
456	Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (La _{<i>x</i>} Sr _{1â€<i>x</i>})CoO _{3â€} _{<i>δ</i>} Cathodes. Advanced Energy Materials, 2013, 3, 788-797.	19.5	19
457	Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nature Nanotechnology, 2013, 8, 748-754.	31.5	218
458	Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology, 2013, 24, 475702.	2.6	63
459	Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes. Scientific Reports, 2013, 3, 1621.	3.3	29
460	Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics. Physical Review B, $2013, 88, .$	3.2	37
461	Local crystallography analysis for atomically resolved scanning tunneling microscopy images. Nanotechnology, 2013, 24, 415707.	2.6	18
462	Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale. Nanoscale, 2013, 5, 11964.	5.6	12
463	Probing Biasâ€Dependent Electrochemical Gas–Solid Reactions in (La _{<i>x</i>} Sr _{1–<i>x</i>})CoO _{3–} _{<i>δ</i>} Cathode Materials. Advanced Functional Materials, 2013, 23, 5027-5036.	14.9	9
464	Effective piezoelectric response of twin walls in ferroelectrics. Journal of Applied Physics, 2013, 113, .	2.5	16
465	Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. , 2013, , .		271
466	Electrical Modulation of the Local Conduction at Oxide Tubular Interfaces. ACS Nano, 2013, 7, 8627-8633.	14.6	40
467	Spatially Resolved Mapping of Oxygen Reduction/Evolution Reaction on Solid-Oxide Fuel Cell Cathodes with Sub-10 nm Resolution. ACS Nano, 2013, 7, 3808-3814.	14.6	25
468	Functional Ion Defects in Transition Metal Oxides. Science, 2013, 341, 858-859.	12.6	227

#	Article	IF	Citations
469	Towards the limit of ferroelectric nanostructures: switchable sub-10 nm nanoisland arrays. Journal of Materials Chemistry C, 2013, $1,5299$.	5 . 5	15
470	Epitaxial Bi ₅ Ti ₃ FeO ₁₅ –CoFe ₂ O ₄ Pillar–Matrix Multiferroic Nanostructures. ACS Nano, 2013, 7, 11079-11086.	14.6	55
471	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	30.8	60
472	Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite. Nano Letters, 2013, 13, 5954-5960.	9.1	142
473	Direct Probe of Interplay between Local Structure and Superconductivity in FeTe _{0.55} Se _{0.45} . ACS Nano, 2013, 7, 2634-2641.	14.6	24
474	Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2013, 87, .	3.2	49
475	Local probing of electrochemically induced negative differential resistance in TiO2memristive materials. Nanotechnology, 2013, 24, 085702.	2.6	18
476	Interplay of Octahedral Tilts and Polar Order in BiFeO ₃ Films. Advanced Materials, 2013, 25, 2497-2504.	21.0	101
477	In Situ Observations and Tuning of Physical and Chemical Phenomena on the Surfaces of Strongly Correlated Oxides. Advanced Functional Materials, 2013, 23, 2477-2489.	14.9	10
478	Polarization Dynamics in Ferroelectric Capacitors: Local Perspective on Emergent Collective Behavior and Memory Effects. Advanced Functional Materials, 2013, 23, 2490-2508.	14.9	22
479	Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology, 2013, 24, 145401.	2.6	19
480	Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy. Advanced Functional Materials, 2013, 23, 3971-3979.	14.9	22
481	Mesoscopic mechanism of the domain wall interaction with elastic defects in uniaxial ferroelectrics. Journal of Applied Physics, 2013, 113, .	2.5	9
482	Large Resistive Switching in Ferroelectric BiFeO ₃ Nanoâ€Island Based Switchable Diodes. Advanced Materials, 2013, 25, 2339-2343.	21.0	192
483	Tunneling Electroresistance Induced by Interfacial Phase Transitions in Ultrathin Oxide Heterostructures. Nano Letters, 2013, 13, 5837-5843.	9.1	115
484	Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films. Advanced Functional Materials, 2013, 23, 81-90.	14.9	20
485	Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N. Nanotechnology, 2013, 24, 475701.	2.6	3
486	Near-field microwave microscopy of high- $\langle i \rangle$ $\hat{l}^2 \langle i \rangle$ oxides grown on graphene with an organic seeding layer. Applied Physics Letters, 2013, 103, .	3.3	12

#	Article	IF	Citations
487	Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution. Scientific Reports, 2013, 3, 2677.	3.3	17
488	Scanning Nearâ€Field Microwave Microscopy of VO ₂ and Chemical Vapor Deposition Graphene. Advanced Functional Materials, 2013, 23, 2635-2645.	14.9	24
489	Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite. Physical Review B, 2013, 88, .	3.2	29
490	Influence of the interfacing with an electrically inhomogeneous bottom electrode on the ferroelectric properties of epitaxial PbTiO3. Applied Physics Letters, 2013, 103, .	3.3	3
491	Preface to Special Topic: Selected Papers from the Piezoresponse Force Microscopy Workshop Series: Part of the Joint ISAF-ECAPD-PFM 2012 Conference. Journal of Applied Physics, 2013, 113, .	2.5	2
492	Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes. Journal of Applied Physics, 2013, 113, 187201.	2.5	13
493	Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, 102, .	3.3	88
494	In Situ Formation of Micron-Scale Li-Metal Anodes with High Cyclability. ECS Electrochemistry Letters, 2013, 3, A4-A7.	1.9	4
495	Correlative Multimodal Probing of Ionically-Mediated Electromechanical Phenomena in Simple Oxides. Scientific Reports, 2013, 3, 2924.	3.3	34
496	LOCAL PROBES IN THE NEXT DECADE OF ENERGY RESEARCH: BRIDGING MACROSCOPIC AND ATOMIC WORLDS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 3-35.	0.1	1
497	Scanning Probe Microscopy in US Department of Energy Nanoscale Science Research Centers: Status, Perspectives, and Opportunities. Advanced Functional Materials, 2013, 23, 2468-2476.	14.9	2
498	Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline Samarium doped ceria thin films. Applied Physics Letters, 2013, 103, .	3.3	23
499	ELECTROCHEMICAL STRAIN MICROSCOPY OF LI-ION AND LI-AIR BATTERY MATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 393-454.	0.1	3
500	Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics. MRS Communications, 2012, 2, 61-73.	1.8	36
501	Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion. Journal of Applied Physics, 2012, 111, 014114.	2.5	21
502	Half-harmonic Kelvin probe force microscopy with transfer function correction. Applied Physics Letters, 2012, 100, 063118.	3.3	20
503	Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field. Applied Physics Letters, 2012, 100, .	3.3	38
504	Anisotropic conductivity of uncharged domain walls in BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 86, .	3.2	64

#	Article	IF	CITATIONS
505	Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mo>â~</mml:mo></mml:msup></mml:math> ferroelectric domain wall. Physical Review B, 2012, 86, .	3.2	26
506	Three-dimensional vector electrochemical strain microscopy. Journal of Applied Physics, 2012, 112, .	2.5	25
507	Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. Applied Physics Letters, 2012, 101, .	3.3	55
508	The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology, 2012, 23, 325402.	2.6	30
509	Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. Journal of Applied Physics, 2012, 111, 014107.	2.5	30
510	Electrochemical Strain Microscopy: Probing Electrochemical Transformations in Nanoscale Volumes. Microscopy Today, 2012, 20, 10-15.	0.3	11
511	Domain Wall Geometry Controls Conduction in Ferroelectrics. Nano Letters, 2012, 12, 5524-5531.	9.1	125
512	Impact of Free Charges on Polarization and Pyroelectricity in Antiferrodistortive Structures and Surfaces Induced by a Flexoelectric Effect. Ferroelectrics, 2012, 438, 32-44.	0.6	9
513	Beyond Condensed Matter Physics on the Nanoscale: The Role of Ionic and Electrochemical Phenomena in the Physical Functionalities of Oxide Materials. ACS Nano, 2012, 6, 10423-10437.	14.6	88
514	Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bulletin, 2012, 37, 651-658.	3.5	83
515	Probing Surface and Bulk Electrochemical Processes on the LaAlO ₃ –SrTiO ₃ lnterface. ACS Nano, 2012, 6, 3841-3852.	14.6	65
516	Domain wall conduction in multiaxial ferroelectrics. Physical Review B, 2012, 85, .	3.2	95
517	Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Physical Review B, 2012, 86, .	3.2	74
518	Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films. Journal of Applied Physics, 2012, 112, .	2.5	18
519	lonically-Mediated Electromechanical Hysteresis in Transition Metal Oxides. ACS Nano, 2012, 6, 7026-7033.	14.6	75
520	Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide. Nano Letters, 2012, 12, 3399-3403.	9.1	58
521	Tunable Metallic Conductance in Ferroelectric Nanodomains. Nano Letters, 2012, 12, 209-213.	9.1	153
522	First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors. ACS Nano, 2012, 6, 491-500.	14.6	50

#	Article	IF	Citations
523	Probing Local Electromechanical Effects in Highly Conductive Electrolytes. ACS Nano, 2012, 6, 10139-10146.	14.6	14
524	KPFM and PFM of Biological Systems. Springer Series in Surface Sciences, 2012, , 243-287.	0.3	10
525	Effects of lateral and substrate constraint on the piezoresponse of ferroelectric nanostructures. Applied Physics Letters, 2012, 101, 112901.	3.3	8
526	Imaging physical phenomena with local probes: From electrons to photons. Reviews of Modern Physics, 2012, 84, 1343-1381.	45.6	76
527	Interface dipole between two metallic oxides caused by localized oxygen vacancies. Physical Review B, 2012, 86, .	3.2	56
528	Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films. Physical Review Letters, 2012, 108, 157604.	7.8	109
529	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	3.8	59
530	Cold-Field Switching in PVDF-TrFE Ferroelectric Polymer Nanomesas. Physical Review Letters, 2012, 108, 027603.	7.8	16
531	Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene. Nanotechnology, 2012, 23, 385706.	2.6	51
532	Switchable Induced Polarization in LaAlO ₃ /SrTiO ₃ Heterostructures. Nano Letters, 2012, 12, 1765-1771.	9.1	167
533	Preface to Special Topic: Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials. Journal of Applied Physics, 2012, 112, 051901.	2.5	5
534	Doping-Based Stabilization of the M2 Phase in Free-Standing VO ₂ Nanostructures at Room Temperature. Nano Letters, 2012, 12, 6198-6205.	9.1	145
535	High-Frequency Electromechanical Imaging of Ferroelectrics in a Liquid Environment. ACS Nano, 2012, 6, 5559-5565.	14.6	18
536	Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains. Journal of Applied Physics, 2012, 112, .	2.5	29
537	Electromechanical and elastic probing of bacteria in a cell culture medium. Nanotechnology, 2012, 23, 245705.	2.6	11
538	Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Materials, 2012, 11, 888-894.	27.5	282
539	Exploring Mesoscopic Physics of Vacancy-Ordered Systems through Atomic Scale Observations of Topological Defects. Physical Review Letters, 2012, 109, 065702.	7.8	36
540	Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. Nanoscale, 2012, 4, 3175.	5.6	42

#	Article	IF	CITATIONS
541	Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Physics, 2012, 8, 81-88. Temperature-composition phase diagrams for Ba <mml:math< td=""><td>16.7</td><td>324</td></mml:math<>	16.7	324
542	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub> < xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mi>x</mml:mi></mml:msub> <td>c/mml:mat 3.2</td> <td>:h>Sr<mml:r 8</mml:r </td>	c/mml:mat 3.2	:h>Sr <mml:r 8</mml:r
543	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow xmml:<br="">Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions. Nanotechnology, 2012, 23, 145301.</mml:mrow></mml:msub>	2.6	10
544	Multifrequency Imaging in the Intermittent Contact Mode of Atomic Force Microscopy: Beyond Phase Imaging. Small, 2012, 8, 1264-1269.	10.0	26
545	Open-loop band excitation Kelvin probe force microscopy. Nanotechnology, 2012, 23, 125704.	2.6	32
546	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 85, .	3.2	71
547	Nanoscale Ferroelectricity in Crystalline γâ€Glycine. Advanced Functional Materials, 2012, 22, 2996-3003.	14.9	119
548	Nanoscale Insight Into Leadâ€Free BNTâ€BTâ€∢i>xi>KNN. Advanced Functional Materials, 2012, 22, 4208-4215.	14.9	225
549	Electrical Control of Multiferroic Orderings in Mixedâ€Phase BiFeO ₃ Films. Advanced Materials, 2012, 24, 3070-3075.	21.0	53
550	Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Communications, 2012, 3, 775.	12.8	145
551	Freeâ€Standing Ferroelectric Nanotubes Processed via Softâ€Template Infiltration. Advanced Materials, 2012, 24, 1160-1165.	21.0	38
552	Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics. Nano Letters, 2011, 11, 4161-4167.	9.1	70
553	Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. Nanotechnology, 2011, 22, 055709.	2.6	13
554	Scaling and disorder analysis of locall–Vcurves from ferroelectric thin films of lead zirconate titanate. Nanotechnology, 2011, 22, 254031.	2.6	24
555	Structural Consequences of Ferroelectric Nanolithography. Nano Letters, 2011, 11, 3080-3084.	9.1	22
556	Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution. Journal of the Electrochemical Society, 2011, 158, A982.	2.9	41
557	Exploring Topological Defects in Epitaxial BiFeO ₃ Thin Films. ACS Nano, 2011, 5, 879-887.	14.6	118
558	Nanoscale Control of Phase Variants in Strain-Engineered BiFeO ₃ . Nano Letters, 2011, 11, 3346-3354.	9.1	76

#	Article	IF	CITATIONS
559	Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films. Journal of the Electrochemical Society, 2011, 158, A1083.	2.9	41
560	Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study. ACS Nano, 2011, 5, 9682-9695.	14.6	61
561	Electromechanical Actuation and Current-Induced Metastable States in Suspended Single-Crystalline VO ₂ Nanoplatelets. Nano Letters, 2011, 11, 3065-3073.	9.1	53
562	Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO ₃ . Nano Letters, 2011, 11, 1906-1912.	9.1	223
563	Band excitation in scanning probe microscopy: sines of change. Journal Physics D: Applied Physics, 2011, 44, 464006.	2.8	150
564	Designing piezoelectric films for micro electromechanical systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1782-1792.	3.0	45
565	Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects. ACS Nano, 2011, 5, 9104-9112.	14.6	69
566	The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films. ACS Nano, 2011, 5, 5683-5691.	14.6	109
567	Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chemistry, 2011, 3, 707-713.	13.6	233
568	Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg _{1/3} Nb _{2/3})O ₃ -based relaxor ferroelectrics. Zeitschrift Fýr Kristallographie, 2011, 226, 99-107.	1.1	46
569	Composition dependence of local piezoelectric nonlinearity in (0.3)Pb(Ni0.33Nb0.67)O3-(0.7)Pb(ZrxTi1â^'x)O3 films. Journal of Applied Physics, 2011, 110, .	2.5	9
570	Li-ion dynamics and reactivity on the nanoscale. Materials Today, 2011, 14, 548-558.	14.2	73
571	Very Large Capacitance Enhancement in a Two-Dimensional Electron System. Science, 2011, 332, 825-828.	12.6	185
572	Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT. Advanced Functional Materials, 2011, 21, 941-947.	14.9	23
573	Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics. Advanced Functional Materials, 2011, 21, 1977-1987.	14.9	113
574	Ferroelectric Materials: Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT (Adv. Funct. Mater. 5/2011). Advanced Functional Materials, 2011, 21, 802-802.	14.9	1
575	Reduced Coercive Field in BiFeO ₃ Thin Films Through Domain Engineering. Advanced Materials, 2011, 23, 669-672.	21.0	82
576	Atomically Resolved Mapping of Polarization and Electric Fields Across Ferroelectric/Oxide Interfaces by Zâ€contrast Imaging. Advanced Materials, 2011, 23, 2474-2479.	21.0	79

#	Article	IF	CITATIONS
577	Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Physical Review B, 2011, 84, .	3.2	19
578	Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Physical Review B, 2011, 83, .	3.2	110
579	Preface to special topic: Piezoresponse force microscopy and nanoscale phenomena in polar materials. Journal of Applied Physics, 2011, 110, 051901.	2.5	2
580	Landau-Ginzburg-Devonshire theory for electromechanical hysteresis loop formation in piezoresponse force microscopy of thin films. Journal of Applied Physics, 2011, 110, .	2.5	24
581	nonlinearity of electromechanical response of SrTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow><td>3.2</td><td>73</td></mml:math>	3.2	73
582	Physical Review B, 2011, 84, Point force and generalized point source on the surface of semi-infinite transversely isotropic material. Journal of Applied Physics, 2011, 110, .	2.5	15
583	Watching domains grow: <i>In-situ</i> studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. Journal of Applied Physics, 2011, 110, .	2.5	57
584	Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Applied Physics Letters, 2011, 98, .	3.3	24
585	Lattice-Symmetry-Driven Phase Competition in Vanadium Dioxide. Materials Research Society Symposia Proceedings, 2011, 1292, 67.	0.1	1
586	Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy. Applied Physics Letters, 2011, 98, 202903.	3.3	24
587	Band Excitation Scanning Probe Microscopies. Microscopy Today, 2010, 18, 34-40.	0.3	12
588	Local polarization dynamics in ferroelectric materials. Reports on Progress in Physics, 2010, 73, 056502.	20.1	368
589	Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. Journal of Applied Physics, 2010, 108, .	2.5	67
590	Direct Observation of Capacitor Switching Using Planar Electrodes. Advanced Functional Materials, 2010, 20, 3466-3475.	14.9	81
591	Defectâ€Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control. Advanced Materials, 2010, 22, 314-322.	21.0	62
592	Local Electrochemical Functionality in Energy Storage Materials and Devices by Scanning Probe Microscopies: Status and Perspectives. Advanced Materials, 2010, 22, E193-209.	21.0	78
593	Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Materialia, 2010, 58, 67-75.	7.9	30
594	Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Materialia, 2010, 58, 5316-5325.	7.9	30

#	Article	IF	Citations
595	Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010, 5, 749-754.	31.5	513
596	Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. Journal of Applied Physics, 2010, 108, .	2.5	138
597	Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. Journal of Applied Physics, 2010, 108, .	2.5	35
598	Preface to Special Topic: Invited Papers from the International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, Aveiro, Portugal, 2009. Journal of Applied Physics, 2010, 108, 041901.	2.5	4
599	Domain Wall Conductivity in La-Doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2010, 105, 197603.	7.8	357
600	Observation of Dipole Stripes and Domain Structure by Transmission Electron Microscope for BiFeO ₃ Single Crystals. Ferroelectrics, 2010, 410, 109-117.	0.6	0
601	Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Physical Review B, 2010, 81, .	3.2	77
602	Correlated polarization switching in the proximity of a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>180</mml:mn><mml:mo>°</mml:mo></mml:mrow></mml:math> dom wall. Physical Review B, 2010, 82, .	3.2 ain	65
603	Finite size and intrinsic field effect on the polar-active properties of ferroelectric-semiconductor heterostructures. Physical Review B, 2010, 81, .	3.2	57
604	Electromechanical probing of ionic currents in energy storage materials. Applied Physics Letters, 2010, 96, .	3.3	65
605	Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7219-7224.	7.1	112
606	Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach. Materials, 2010, 3, 4860-4870.	2.9	16
607	Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	25
608	Dynamic and Spectroscopic Modes and Multivariate Data Analysis in Piezoresponse Force Microscopy., 2010, , 491-528.		8
609	Long range interactions in nanoscale science. Reviews of Modern Physics, 2010, 82, 1887-1944.	45.6	359
610	Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. Journal of Applied Physics, 2010, 108, .	2.5	47
611	Energy dissipation measurements in frequency-modulated scanning probe microscopy. Nanotechnology, 2010, 21, 455705.	2.6	26
612	Scanning Microwave Microscopy Studies of Metal-Insulator Transition at Ferroelastic Domain Walls in VO ₂ . Microscopy and Microanalysis, 2010, 16, 460-461.	0.4	1

#	Article	IF	CITATIONS
613	Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment. ACS Nano, 2010, 4, 689-698.	14.6	37
614	Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010, 10, 3420-3425.	9.1	232
615	Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry. Physical Review Letters, 2010, 105, 227203.	7.8	211
616	Mesoscopic Metalâ^Insulator Transition at Ferroelastic Domain Walls in VO ₂ . ACS Nano, 2010, 4, 4412-4419.	14.6	68
617	Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale. ACS Nano, 2010, 4, 7349-7357.	14.6	96
618	Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO ₃ Thin Films. Nano Letters, 2010, 10, 2555-2561.	9.1	149
619	Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis. Macromolecules, 2010, 43, 6724-6730.	4.8	33
620	Interplay between Ferroelastic and Metalâ^'Insulator Phase Transitions in Strained Quasi-Two-Dimensional VO ₂ Nanoplatelets. Nano Letters, 2010, 10, 2003-2011.	9.1	101
621	Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces. Physical Review Letters, 2010, 105, 087204.	7.8	308
622	Oxygen-Induced Surface Reconstruction of SrRuO ₃ and Its Effect on the BaTiO ₃ Interface. ACS Nano, 2010, 4, 4190-4196.	14.6	44
623	Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions. Nanotechnology, 2010, 21, 365302.	2.6	20
624	Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide. Nano Letters, 2010, 10, 4409-4416.	9.1	149
625	Mapping Octahedral Tilts and Polarization Across a Domain Wall in BiFeO ₃ from Z-Contrast Scanning Transmission Electron Microscopy Image Atomic Column Shape Analysis. ACS Nano, 2010, 4, 6071-6079.	14.6	150
626	Ferroelectricity in Strain-Free <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Films. Physical Review Letters, 2010, 104, 197601.	7.8	233
627	Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology, 2010, 21, 405703.	2.6	66
628	Spatially Resolved Spectroscopic Mapping of Polarization Reversal in Polycrystalline Ferroelectric Films: Crossing the Resolution Barrier. Physical Review Letters, 2009, 103, 057601.	7.8	30
629	Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale. MRS Bulletin, 2009, 34, 648-657.	3.5	186
630	Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Applied Physics Letters, 2009, 95, .	3.3	27

#	Article	IF	CITATIONS
631	Intrinsic Nucleation Mechanism and Disorder Effects in Polarization Switching on Ferroelectric Surfaces. Physical Review Letters, 2009, 102, 017601.	7.8	49
632	Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond–Random-Field Ising Model. Physical Review Letters, 2009, 103, 157203.	7.8	35
633	Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology, 2009, 20, 395709.	2.6	42
634	Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry. Nanotechnology, 2009, 20, 255701.	2.6	19
635	Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology, 2009, 20, 085714.	2.6	112
636	Surface effect on domain wall width in ferroelectrics. Journal of Applied Physics, 2009, 106, .	2.5	59
637	Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology, 2009, 20, 405708.	2.6	32
638	Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications. MRS Bulletin, 2009, 34, 634-642.	3.5	43
639	Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite. Advanced Functional Materials, 2009, 19, 2053-2063.	14.9	65
640	Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. Journal of Materials Science, 2009, 44, 5095-5101.	3.7	38
641	Conduction at domain walls in oxide multiferroics. Nature Materials, 2009, 8, 229-234.	27.5	1,212
642	Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials, 2009, 8, 485-493.	27.5	481
643	Deterministic control of ferroelastic switching in multiferroic materials. Nature Nanotechnology, 2009, 4, 868-875.	31.5	331
644	Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future. Journal of the American Ceramic Society, 2009, 92, 1629-1647.	3.8	287
645	Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. International Journal of Engineering Science, 2009, 47, 221-239.	5.0	34
646	Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: Applications to probing nanoelectromechanical properties of materials. Journal of the Mechanics and Physics of Solids, 2009, 57, 673-688.	4.8	33
647	Electronic transport through <i>in situ</i> grown ultrathin BaTiO3 films. Applied Physics Letters, 2009, 95, 032903.	3.3	7
648	Atomistic Screening Mechanism of Ferroelectric Surfaces: An In Situ Study of the Polar Phase in Ultrathin BaTiO ₃ Films Exposed to H ₂ O. Nano Letters, 2009, 9, 3720-3725.	9.1	73

#	Article	IF	CITATIONS
649	Detection of percolating paths in polyhedral segregated network composites using electrostatic force microscopy and conductive atomic force microscopy. Applied Physics Letters, 2009, 95, .	3.3	20
650	Intermittent contact mode piezoresponse force microscopy in a liquid environment. Nanotechnology, 2009, 20, 195701.	2.6	28
651	Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Applied Physics Letters, 2009, 94, .	3.3	57
652	Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Applied Physics Letters, 2009, 95, 142902.	3.3	35
653	Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. Physical Review B, 2009, 80, .	3.2	63
654	Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science, 2009, 324, 1421-1425.	12.6	441
655	Using Neural Network Algorithms for Compositional Mapping in STEM EELS. Microscopy and Microanalysis, 2009, 15, 450-451.	0.4	1
656	Interfacial Structure in Multiferroic BiFeO3 Thin Films. Microscopy and Microanalysis, 2009, 15, 1028-1029.	0.4	0
657	Piezoresponse Force Microscopy. Microscopy Today, 2009, 17, 10-15.	0.3	9
658	Local bias-induced phase transitions. Materials Today, 2008, 11, 16-27.	14.2	49
659	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114.	21.0	56
659		21.0	56 250
	Materials, 2008, 20, 109-114. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials.		
660	Materials, 2008, 20, 109-114. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Materials, 2008, 7, 209-215. Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain	27.5	250
660	Materials, 2008, 20, 109-114. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Materials, 2008, 7, 209-215. Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall. Journal of Applied Physics, 2008, 103, 124110.	27.5 2.5	250 21
660 661 662	Materials, 2008, 20, 109-114. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Materials, 2008, 7, 209-215. Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall. Journal of Applied Physics, 2008, 103, 124110. AFM Investigation of Mechanical Properties of Dentin. Israel Journal of Chemistry, 2008, 48, 65-72. Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and	27.5 2.5 2.3	250 21 14
660 661 662	Materials, 2008, 20, 109-114. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Materials, 2008, 7, 209-215. Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall. Journal of Applied Physics, 2008, 103, 124110. AFM Investigation of Mechanical Properties of Dentin. Israel Journal of Chemistry, 2008, 48, 65-72. Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and piezoresponse force spectroscopy observations. Physical Review B, 2008, 78, . Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization	27.5 2.5 2.3	250 21 14 32

#	Article	IF	Citations
667	Electronic flexoelectricity in low-dimensional systems. Physical Review B, 2008, 77, .	3.2	157
668	Direct measurement of periodic electric forces in liquids. Journal of Applied Physics, 2008, 103, 014306.	2.5	9
669	Resonance frequency analysis for surface-coupled atomic force microscopy cantilever in ambient and liquid environments. Applied Physics Letters, 2008, 92, 083102.	3.3	19
670	Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite. Applied Physics Letters, 2008, 93, .	3.3	66
671	Nanoscale polarization profile across a $180 \hat{A}^\circ$ ferroelectric domain wall extracted by quantitative piezoelectric force microscopy. Journal of Applied Physics, 2008, 104, 074110.	2.5	43
672	The influence of $180\hat{A}^\circ$ ferroelectric domain wall width on the threshold field for wall motion. Journal of Applied Physics, 2008, 104, 084107.	2.5	53
673	Polar distortion in ultrathinBaTiO3films studied byin situLEEDIâ^*V. Physical Review B, 2008, 77, .	3.2	29
674	Effect of ferroelastic twin walls on local polarization switching: Phase-field modeling. Applied Physics Letters, 2008, 93, .	3.3	35
675	Imaging mechanism of piezoresponse force microscopy in capacitor structures. Applied Physics Letters, 2008, 92, .	3.3	56
676	Probing the Role of Single Defects on the Thermodynamics of Electric-Field Induced Phase Transitions. Physical Review Letters, 2008, 100, 155703.	7.8	83
677	Screening and retardation effects on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>></mml:mn>>></mml:math> -domawall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions. Physical Review B, 2008, 78, .	ain 3.2	44
678	Domain dynamics in piezoresponse force spectroscopy: Quantitative deconvolution and hysteresis loop fine structure. Applied Physics Letters, 2008, 92, 182909.	3.3	28
679	Interaction of a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mno> <mml:mn> 180 </mml:mn> <mml:mo> ° </mml:mo></mml:mno></mml:math> ferroe domain wall with a biased scanning probe microscopy tip: Effective wall geometry and thermodynamics in Ginzburg-Landau-Devonshire theory. Physical Review B. 2008. 78	electric 3.2	43
680	Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3â^'CoFe2O4 epitaxial films. Applied Physics Letters, 2008, 93, 074101.	3.3	18
681	Local polarization dynamics in chemical solution deposited PZT capacitors by switching spectroscopy PFM. , 2008, , .		1
682	Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities. Microscopy Today, 2008, 16, 28-33.	0.3	O
683	Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20204-20209.	7.1	73
684	Local Polarization Switching in Piezoresponse Force Microscopy. Ferroelectrics, 2007, 354, 198-207.	0.6	14

#	Article	IF	Citations
685	Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment. Nanotechnology, 2007, 18, 424020.	2.6	41
686	Recent Advances in Electromechanical Imaging on the Nanometer Scale: Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging. Japanese Journal of Applied Physics, 2007, 46, 5674-5685.	1.5	18
687	Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology, 2007, 18, 405701.	2.6	51
688	Quantitative determination of tip parameters in piezoresponse force microscopy. Applied Physics Letters, 2007, 90, 212905.	3.3	32
689	Extrinsic size effect in piezoresponse force microscopy of thin films. Physical Review B, 2007, 76, .	3.2	40
690	The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function. Journal of Applied Physics, 2007, 102, 074105.	2.5	51
691	Controlling Polarization Dynamics in a Liquid Environment: From Localized to Macroscopic Switching in Ferroelectrics. Physical Review Letters, 2007, 98, 247603.	7.8	46
692	Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes. Physical Review Letters, 2007, 98, 056401.	7.8	24
693	Layer-by-layer and pseudo-two-dimensional growth modes for heteroepitaxial BaTiO3 films by exploiting kinetic limitations. Applied Physics Letters, 2007, 91, 202901.	3.3	30
694	Peritubular Dentin Lacks Piezoelectricity. Journal of Dental Research, 2007, 86, 908-911.	5.2	37
695	Electromechanical detection in scanning probe microscopy: Tip models and materials contrast. Journal of Applied Physics, 2007, 102, .	2.5	80
696	High-resolution imaging of proteins in human teeth by scanning probe microscopy. Biochemical and Biophysical Research Communications, 2007, 352, 142-146.	2.1	35
697	Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: Applications to scanning probe microscopy. Physical Review B, 2007, 76, .	3.2	41
698	Fabrication, dynamics, and electrical properties of insulated scanning probe microscopy probes for electrical and electromechanical imaging in liquids. Applied Physics Letters, 2007, 91, .	3.3	25
699	High frequency piezoresponse force microscopy in the 1-10MHz regime. Applied Physics Letters, 2007, 91,	3.3	26
700	Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108.	2.5	73
701	Relationship between direct and converse piezoelectric effect in a nanoscale electromechanical contact. Physical Review B, 2007, 76, .	3.2	29
702	Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Applied Physics Letters, 2007, 90, 122904.	3.3	91

#	Article	IF	Citations
703	Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy. Annual Review of Materials Research, 2007, 37, 189-238.	9.3	204
704	Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology, 2007, 18, 475504.	2.6	428
705	The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology, 2007, 18, 435503.	2.6	413
706	Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution. Physical Review B, 2007, 75, .	3.2	93
707	Electromechanical Behavior in Biological Systems at the Nanoscale. , 2007, , 615-633.		12
708	Frequency-Dependent Transport Imaging by Scanning Probe Microscopy., 2007,, 132-172.		4
709	Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy., 2007,, 173-214.		76
710	A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2226-2252.	3.0	170
711	Quantitative mapping of switching behavior in piezoresponse force microscopy. Review of Scientific Instruments, 2006, 77, 073702.	1.3	193
712	Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Applied Physics Letters, 2006, 88, 153902.	3.3	32
713	Observing the superparaelectric limit of relaxor (Na1â^•2Bi1â^•2)0.9Ba0.1TiO3 nanocrystals. Applied Physics Letters, 2006, 89, 112901.	3.3	10
714	Dynamic behaviour in piezoresponse force microscopy. Nanotechnology, 2006, 17, 1615-1628.	2.6	108
715	Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. Applied Physics Letters, 2006, 89, 022906.	3.3	117
716	Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Applied Physics Letters, 2006, 88, 062908.	3.3	371
717	Materials contrast in piezoresponse force microscopy. Applied Physics Letters, 2006, 88, 232904.	3.3	71
718	Electromechanical imaging of biomaterials by scanning probe microscopy. Journal of Structural Biology, 2006, 153, 151-159.	2.8	50
719	Detection of Indentation Induced FE-to-AFE Phase Transformation in Lead Zirconate Titanate. Journal of the American Ceramic Society, 2006, 89, 3557-3559.	3.8	10
720	Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy, 2006, 106, 334-340.	1.9	66

#	Article	IF	Citations
721	Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. Journal of Materials Science, 2006, 41, 107-116.	3.7	283
722	Application of spectromicroscopy tools to explore local origins of sensor activity in quasi-1D oxide nanostructures. Nanotechnology, 2006, 17, 4014-4018.	2.6	9
723	Piezoelectric nanoindentation. Journal of Materials Research, 2006, 21, 552-556.	2.6	50
724	High Resolution Electromechanical Imaging of Ferroelectric Materials in a Liquid Environment by Piezoresponse Force Microscopy. Physical Review Letters, 2006, 96, 237602.	7.8	80
725	Adsorption, desorption, and dissociation of benzene on TiO2(110) and Pdâ^•TiO2(110): Experimental characterization and first-principles calculations. Physical Review B, 2006, 74, .	3.2	20
726	Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy. Applied Physics Letters, 2006, 89, 192901.	3.3	55
727	Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces. Applied Physics Letters, 2006, 88, 143128.	3.3	8
728	Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology, 2006, 17, 3400-3411.	2.6	71
729	Vector Piezoresponse Force Microscopy. Microscopy and Microanalysis, 2006, 12, 206-220.	0.4	228
730	Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. , 2006, , 107-116.		9
731	Local Phenomena in Oxides by Advanced Scanning Probe Microscopy. Journal of the American Ceramic Society, 2005, 88, 1077-1098.	3.8	73
732	Surface stability of epitaxial SrRuO3 films. Surface Science, 2005, 581, 118-132.	1.9	58
733	Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2102.	1.6	35
734	Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. Applied Physics Letters, 2005, 87, 172903.	3.3	12
735	Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. Journal of Applied Physics, 2005, 98, 044503.	2.5	62
736	Nanoelectromechanics of polarization switching in piezoresponse force microscopy. Journal of Applied Physics, 2005, 97, 074305.	2.5	62
737	A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Applied Physics Letters, 2005, 86, 013506.	3.3	119
738	Real space imaging of the microscopic origins of the ultrahigh dielectric constant in polycrystalline CaCu3Ti4O12. Applied Physics Letters, 2005, 86, 102902.	3.3	64

#	Article	IF	Citations
739	Electromechanical imaging of biological systems with sub-10nm resolution. Applied Physics Letters, 2005, 87, 053901.	3.3	93
740	Scanning Probe Microscopy of Piezoelectric and Transport Phenomena in Electroceramic Materials., 2005, , 199-222.		0
741	Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philosophical Magazine, 2005, 85, 1017-1051.	1.6	85
742	Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Applied Physics Letters, 2005, 86, 012906.	3.3	196
743	Scanning probe microscopy imaging of frequency dependent electrical transport through carbon nanotube networks in polymers. Nanotechnology, 2004, 15, 907-912.	2.6	23
744	Quantitative Analysis of Electronic Properties of Carbon Nanotubes by Scanning Probe Microscopy: From Atomic to Mesoscopic Length Scales. Physical Review Letters, 2004, 93, 246801.	7.8	22
745	Nanoscale domain patterning of lead zirconate titanate materials using electron beams. Applied Physics Letters, 2004, 84, 774-776.	3.3	29
746	High-throughput growth temperature optimization of ferroelectric SrxBa1â^'xNb2O6 epitaxial thin films using a temperature gradient method. Applied Physics Letters, 2004, 84, 1350-1352.	3.3	31
747	Local electronic transport at grain boundaries in Nb-dopedSrTiO3. Physical Review B, 2004, 70, .	3.2	37
748	Nonlinear transport imaging by scanning impedance microscopy. Applied Physics Letters, 2004, 85, 4240-4242.	3.3	17
749	Surface stability of epitaxial SrRuO3 thin films in vacuum. Journal of Materials Research, 2004, 19, 3447-3450.	2.6	14
750	Theory of Scanning Probe Microscopy of Carbon Nanostructures. Materials Research Society Symposia Proceedings, 2004, 838, 79.	0.1	0
751	Surface dynamics of the layered ruthenate Ca1.9Sr0.1RuO4. Physica Status Solidi (B): Basic Research, 2004, 241, 2363-2366.	1.5	5
752	Ferroelectric Lithography of Multicomponent Nanostructures. Advanced Materials, 2004, 16, 795-799.	21.0	127
753	Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements. Nano Letters, 2004, 4, 555-560.	9.1	149
754	Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy. Journal of Applied Physics, 2004, 96, 563-568.	2.5	117
755	Growth of Carbon Nanofibers on Tipless Cantilevers for High Resolution Topography and Magnetic Force Imaging. Nano Letters, 2004, 4, 2157-2161.	9.1	66
756	Quantitative analysis of nanoscale switching in SrBi2Ta2O9 thin filmsby piezoresponse force microscopy. Applied Physics Letters, 2004, 85, 795-797.	3.3	69

#	Article	IF	CITATIONS
757	Electric Scanning Probe Imaging and Modification of Ferroelectric Surfaces. Nanoscience and Technology, 2004, , 1-43.	1.5	6
758	Nanoelectromechanics of piezoresponse force microscopy. Physical Review B, 2004, 70, .	3.2	230
759	Polarization and Charge Dynamics in Ferroelectric Materials with SPM., 2004, , 183-217.		5
760	Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Applied Physics Letters, 2003, 82, 1869-1871.	3.3	136
761	Nanoelectromechanics of Piezoresponse Force Microscopy: Contact Properties, Fields Below the Surface and Polarization Switching. Materials Research Society Symposia Proceedings, 2003, 784, 261.	0.1	4
762	Nonlinear Dielectric Properties at Oxide Grain Boundaries. International Journal of Materials Research, 2003, 94, 188-192.	0.8	7
763	Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors. Physical Review Letters, 2002, 89, 216801.	7.8	122
764	Tip-gating effect in scanning impedance microscopy of nanoelectronic devices. Applied Physics Letters, 2002, 81, 5219-5221.	3.3	34
765	Scanning impedance microscopy of an active Schottky barrier diode. Journal of Applied Physics, 2002, 91, 832-839.	2,5	56
766	Contrast Mechanism Maps for Piezoresponse Force Microscopy. Journal of Materials Research, 2002, 17, 936-939.	2.6	41
767	ROLE OF DEFECTS IN CARBON NANOTUBE CIRCUITS. International Journal of Nanoscience, 2002, 01, 247-254.	0.7	0
768	Nanoimpedance Microscopy and Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 738, 441.	0.1	3
769	Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Physical Review B, 2002, 65, .	3.2	446
770	Atomic Polarization and Local Reactivity on Ferroelectric Surfaces:Â A New Route toward Complex Nanostructures. Nano Letters, 2002, 2, 589-593.	9.1	224
771	Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface. Journal of Applied Physics, 2002, 91, 3816-3823.	2.5	133
772	Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies. Applied Physics Letters, 2002, 81, 754-756.	3.3	29
773	Micromagnetic and magnetoresistance studies of ferromagneticLa0.83Sr0.13MnO2.98crystals. Physical Review B, 2002, 65, .	3.2	9
774	Scanning Impedance Microscopy: From Impedance Spectra to Impedance Images. Microscopy Today, 2002, 10, 22-27.	0.3	1

#	Article	IF	Citations
775	Artifacts and Non-Local Effects in SPM Potential Measurements. Microscopy Today, 2002, 10, 16-21.	0.3	1
776	Synthesis of PbS/S Nanostructures through Chemical Modification of Layered Double Hydroxides. Doklady Chemistry, 2002, 383, 93-96.	0.9	6
777	Potential and Impedance Imaging of Polycrystalline BiFeO ₃ Ceramics. Journal of the American Ceramic Society, 2002, 85, 3011-3017.	3.8	83
778	Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction. Applied Physics Letters, 2001, 78, 1005-1007.	3.3	14
779	Local potential and polarization screening on ferroelectric surfaces. Physical Review B, 2001, 63, .	3.2	334
780	Local Polarization, Charge Compensation, and Chemical Interactions on Ferroelectric Surfaces: a Route Toward New Nanostructures. Materials Research Society Symposia Proceedings, 2001, 688, 1.	0.1	5
781	Scanning Impedance Microscopy: From Impedance Spectra to Impedance Images. Materials Research Society Symposia Proceedings, 2001, 699, 121.	0.1	4
782	Analysis of phase distributions in the Li2O–Nb2O5–TiO2 system by piezoresponse imaging. Journal of Materials Research, 2001, 16, 329-332.	2.6	8
783	Local Potential at Atomically Abrupt Oxide Grain Boundaries by Scanning Probe Microscopy. Solid State Phenomena, 2001, 80-81, 33-46.	0.3	5
784	Scanning impedance microscopy of electroactive interfaces. Applied Physics Letters, 2001, 78, 1306-1308.	3.3	70
785	Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy. Applied Physics Letters, 2001, 78, 1116-1118.	3.3	97
786	Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy. Journal of Applied Physics, 2000, 87, 3950-3957.	2.5	87
787	Evolution of fractal particles in systems with conserved order parameter. Physical Review E, 2000, 61, 1189-1194.	2.1	8
788	Surface potential at surface-interface junctions in SrTiO3 bicrystals. Physical Review B, 2000, 62, 10419-10430.	3.2	57
789	Influence of the Drying Technique on the Structure of Silica Gels. Journal of Sol-Gel Science and Technology, 1999, 15, 31-35.	2.4	33
790	The Effect of Copolymerization of Tetraethylorthosilicate and Aluminum Hydroxonitrates. Journal of Solid State Chemistry, 1999, 147, 304-308.	2.9	4
791	Local Potential at Atomically Abrupt Oxide Interfaces by Scanning Probe Microscopy. Materials Research Society Symposia Proceedings, 1999, 586, 15.	0.1	1
792	Characterization of Ferroelectric BaTiO3 (100) Surfaces by Variable Temperature Scanning Surface Potential Microscopy and Piezoresponse Imaging. Materials Research Society Symposia Proceedings, 1999, 596, 327.	0.1	2

#	Article	IF	CITATIONS
793	Kinetics of Solid State Reactions With Fractal Reagent. Journal of Materials Synthesis and Processing, 1998, 6, 305-309.	0.3	6
794	Application of non-linear heating regime for the determination of activation energy and kinetic parameters of solid-state reactions. Thermochimica Acta, 1998, 323, 101-107.	2.7	10
795	Cryosol method: A novel powder processing technique based on ion-exchange phenomena. Journal of Materials Research, 1998, 13, 901-904.	2.6	6
796	Cryosol Synthesis of Nanocrystalline Alumina. Chemistry of Materials, 1998, 10, 3548-3554.	6.7	10
797	Microstructure and Sensing Properties of Cryosol Derived Nanocrystalline Tin Dioxide. Materials Research Society Symposia Proceedings, 1998, 536, 389.	0.1	0
798	Influence of The Preparation Conditions on the Structure of Hydrotalcite Layered Double Hydroxides. Materials Research Society Symposia Proceedings, 1998, 547, 239.	0.1	3
799	Cryosol Synthesis of Nanocomposite Materials. Materials Research Society Symposia Proceedings, 1998, 547, 499.	0.1	0
800	Effect of microstructure on the stability of nanocrystalline tin dioxide ceramics. Journal of Materials Chemistry, 1997, 7, 2269-2272.	6.7	18
801	Visible spectra of fractal particles in colloidal solutions. Chemical Physics Letters, 1996, 262, 455-459.	2.6	2
802	Dehydration of Fractal Particles of Iron (III) and Aluminum Hydroxides. Materials Research Society Symposia Proceedings, 1995, 407, 405.	0.1	0
803	The fractal particles of iron (III) hydroxonitrate: From solution to solid state. Journal of Non-Crystalline Solids, 1995, 181, 146-150.	3.1	11
804	Local Origins of Sensor Activity in 1D Oxide Nanostructures: From Spectromicroscopy to Device. , 0, , .		0
805	Light–ferroelectric interaction in two-dimensional lead iodide perovskites. Journal of Materials Chemistry A, 0, , .	10.3	1