
Timothy D Le Cras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695330/publications.pdf Version: 2024-02-01

TIMOTHY DIE COAS

#	Article	IF	CITATIONS
1	NRASQ61R mutation in human endothelial cells causes vascular malformations. Angiogenesis, 2022, 25, 331-342.	7.2	8
2	Circulating level of Angiopoietin-2 is associated with acute kidney injury in coronavirus disease 2019 (COVID-19). Angiogenesis, 2021, 24, 403-406.	7.2	15
3	Comment on: Potential biomarkers of kaposiform lymphangiomatosis. Pediatric Blood and Cancer, 2020, 67, e28100.	1.5	2
4	Kaposiform lymphangiomatosis treated with multimodal therapy improves coagulopathy and reduces blood angiopoietinâ€2 levels. Pediatric Blood and Cancer, 2020, 67, e28529.	1.5	17
5	Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis, 2020, 23, 425-442.	7.2	34
6	Hypoxia-induced Pulmonary Hypertension in Different Mouse Strains: Relation to Transcriptome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 106-116.	2.9	14
7	Signaling pathways and inhibitors of cells from patients with kaposiform lymphangiomatosis. Pediatric Blood and Cancer, 2019, 66, e27790.	1.5	18
8	Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 496-512.	2.4	22
9	Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. Vascular Biology (Bristol,) Tj ETQq1 I	0.7 <u>84</u> 314	rgBT /Overlo
10	Capillary Lymphatic Venous Malformations are caused by Endothelialâ€Specific Gainâ€ofâ€Function Mutations in the PIK3CA Gene. FASEB Journal, 2019, 33, 527.3.	0.5	0
11	Independent and combined effects of airway remodelling and allergy on airway responsiveness. Clinical Science, 2018, 132, 327-338.	4.3	20
12	Angiopoietins as serum biomarkers for lymphatic anomalies. Angiogenesis, 2017, 20, 163-173.	7.2	48
13	Optical coherence tomography-based contactÂindentationÂfor diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease. Scientific Reports, 2017, 7, 1517.	3.3	5
14	Epidermal growth factor receptor signalling regulates granulocyte–macrophage colonyâ€stimulating factor production by airway epithelial cells and established allergic airway disease. Clinical and Experimental Allergy, 2016, 46, 317-328.	2.9	27
15	Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. Journal of Clinical Investigation, 2015, 126, 571-584.	8.2	33
16	Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clinical and Experimental Allergy, 2013, 43, 1406-1418.	2.9	63
17	Diesel exhaust particle induction of IL-17A contributes toÂsevere asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 1194-1204.e2.	2.9	208
18	Differential Effects of Rapamycin and Dexamethasone in Mouse Models of Established Allergic Asthma. PLoS ONE, 2013, 8, e54426.	2.5	31

TIMOTHY D LE CRAS

#	Article	IF	CITATIONS
19	Diesel Exhaust Particles Induce Cysteine Oxidation and S-Glutathionylation in House Dust Mite Induced Murine Asthma. PLoS ONE, 2013, 8, e60632.	2.5	15
20	Chronic Allergic Inflammation Causes Vascular Remodeling and Pulmonary Hypertension in Bmpr2 Hypomorph and Wild-Type Mice. PLoS ONE, 2012, 7, e32468.	2.5	24
21	A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 254-261.e6.	2.9	37
22	Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease. Journal of Applied Physiology, 2011, 111, 1760-1767.	2.5	15
23	Rapamycin Attenuates Airway Hyperreactivity, Goblet Cells, and IgE in Experimental Allergic Asthma. Journal of Immunology, 2011, 187, 5756-5763.	0.8	67
24	Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L414-L421.	2.9	126
25	Pharmacological inhibition of EGFR signaling enhances G-CSF–induced hematopoietic stem cell mobilization. Nature Medicine, 2010, 16, 1141-1146.	30.7	61
26	Inhibition of PI3K by PX-866 Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis. American Journal of Pathology, 2010, 176, 679-686.	3.8	57
27	Rapamycin Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 562-572.	2.9	91
28	Early Growth Response-1 Suppresses Epidermal Growth Factor Receptor–Mediated Airway Hyperresponsiveness and Lung Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 415-425.	2.9	36
29	GP130-STAT3 Regulates Epithelial Cell Migration and Is Required for Repair of the Bronchiolar Epithelium. American Journal of Pathology, 2008, 172, 1542-1554.	3.8	67
30	EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1217-L1225.	2.9	79
31	Perinatal increases in TGF-α disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L314-L327.	2.9	33
32	Genomic Profile of Matrix and Vasculature Remodeling in TGF-α–Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 309-321.	2.9	60
33	Differential vascular growth in postpneumonectomy compensatory lung growth. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 309-316.	0.8	26
34	Vascular growth and remodeling in compensatory lung growth following right lobectomy. Journal of Applied Physiology, 2005, 98, 1140-1148.	2.5	27
35	TGF-α perturbs surfactant homeostasis in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L34-L43.	2.9	6
36	Vascular Endothelial Growth Factor-A Induces Prenatal Neovascularization and Alters Bronchial Development in Mice. Pediatric Research, 2005, 57, 82-88.	2.3	44

TIMOTHY D LE CRAS

#	Article	IF	CITATIONS
37	Transient induction of TGF-α disrupts lung morphogenesis, causing pulmonary disease in adulthood. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L718-L729.	2.9	59
38	Midkine Is Regulated by Hypoxia and Causes Pulmonary Vascular Remodeling. Journal of Biological Chemistry, 2004, 279, 37124-37132.	3.4	136
39	Vascular changes after intra-amniotic endotoxin in preterm lamb lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1178-L1185.	2.9	132
40	VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L134-L142.	2.9	113
41	Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-α. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1046-L1054.	2.9	56
42	p27 ^{Kip1} Is Important in Modulating Pulmonary Artery Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 652-658.	2.9	54
43	Inhibition of angiogenesis decreases alveolarization in the developing rat lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L600-L607.	2.9	572
44	Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. Journal of Clinical Investigation, 2000, 106, 1311-1319.	8.2	979
45	Repetitive Prenatal Glucocorticoids Increase Lung Endothelial Nitric Oxide Synthase Expression in Ovine Fetuses Delivered at Term. Pediatric Research, 2000, 48, 75-83.	2.3	23
46	Effects of Chronic Hypoxia and Altered Hemodynamics on Endothelial Nitric Oxide Synthase and Preproendothelin-1 Expression in the Adult Rat Lung. Chest, 1998, 114, 35S-36S.	0.8	6
47	Halothane and Isoflurane Inhibit Endothelium-derived Relaxing Factor-dependent Cyclic Guanosine Monophosphate Accumulation in Endothelial Cell-Vascular Smooth Muscle Co-cultures Independent of an Effect on Guanylyl Cyclase Activation. Anesthesiology, 1995, 83, 823-834	2.5	44