Steven Kisseleff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695175/publications.pdf

Version: 2024-02-01

687363 794594 26 988 13 19 citations h-index g-index papers 27 27 27 684 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Demand and Interference Aware Adaptive Resource Management for High Throughput GEO Satellite Systems. IEEE Open Journal of the Communications Society, 2022, 3, 759-775.	6.9	3
2	Maximizing the Number of Served Users in a Smart City using Reconfigurable Intelligent Surfaces. , 2022, , .		2
3	Impact of Phase-Noise and Spatial Correlation on Double-RIS-Assisted Multiuser MISO Networks. IEEE Wireless Communications Letters, 2022, 11, 1473-1477.	5.0	5
4	Satellite Communications in the New Space Era: A Survey and Future Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 70-109.	39.4	447
5	Efficient Preamble Detection and Time-of-Arrival Estimation for Single-Tone Frequency Hopping Random Access in NB-IoT. IEEE Internet of Things Journal, 2021, 8, 7437-7449.	8.7	12
6	Radio Resource Management Techniques for Multibeam Satellite Systems. IEEE Communications Letters, 2021, 25, 2448-2452.	4.1	36
7	Demand-Based Adaptive Multi-Beam Pattern and Footprint Planning for High Throughput GEO Satellite Systems. IEEE Open Journal of the Communications Society, 2021, 2, 1526-1540.	6.9	15
8	Flexible Resource Optimization for GEO Multibeam Satellite Communication System. IEEE Transactions on Wireless Communications, 2021, 20, 7888-7902.	9.2	53
9	Limits of Smart Radio Resource Assignment in GEO Satellite Communications. , 2021, , .		4
10	Optimal Detection of Multiple Symbol-Slotted Random Access-Based Packet Transmissions. IEEE Wireless Communications Letters, 2021, 10, 981-985.	5.0	0
11	Symbol-Level Precoding With Constellation Rotation in the Finite Block Length Regime. IEEE Communications Letters, 2021, 25, 2314-2318.	4.1	2
12	A Low-complexity Resource Optimization Technique for High Throughput Satellite. , 2021, , .		1
13	Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster. IEEE Access, 2021, 9, 150214-150233.	4.2	24
14	Centralized Gateway Concept for Precoded Multi-beam GEO Satellite Networks. , 2021, , .		11
15	Precoding-Aided Bandwidth Optimization for High Throughput Satellite Systems. , 2021, , .		2
16	Carrier and Power Assignment for Flexible Broadband GEO Satellite Communications System. , 2020, , .		14
17	Efficient Detectors for Telegram Splitting-Based Transmission in Low Power Wide Area Networks With Bursty Interference. IEEE Transactions on Communications, 2020, 68, 7687-7701.	7.8	2
18	Reconfigurable Intelligent Surfaces for Smart Cities: Research Challenges and Opportunities. IEEE Open Journal of the Communications Society, 2020, 1, 1781-1797.	6.9	52

#	Article	IF	CITATION
19	Random Access-Based Reliable Uplink Communication and Power Transfer Using Dynamic Power Splitting. IEEE Transactions on Wireless Communications, 2020, 19, 4307-4320.	9.2	2
20	Survey on Advances in Magnetic Induction-Based Wireless Underground Sensor Networks. IEEE Internet of Things Journal, 2018, 5, 4843-4856.	8.7	64
21	Magnetic Induction-Based Simultaneous Wireless Information and Power Transfer for Single Information and Multiple Power Receivers. IEEE Transactions on Communications, 2017, 65, 1396-1410.	7.8	34
22	Magnetic Nanoparticle Based Interface for Molecular Communication Systems. IEEE Communications Letters, 2017, 21, 258-261.	4.1	13
23	Efficient Charging of Access Limited Wireless Underground Sensor Networks. IEEE Transactions on Communications, 2016, 64, 2130-2142.	7.8	23
24	Digital Signal Transmission in Magnetic Induction Based Wireless Underground Sensor Networks. IEEE Transactions on Communications, 2015, 63, 2300-2311.	7.8	36
25	Throughput of the Magnetic Induction Based Wireless Underground Sensor Networks: Key Optimization Techniques. IEEE Transactions on Communications, 2014, 62, 4426-4439.	7.8	60
26	Increasing the Capacity of Magnetic Induction Communications in RF-Challenged Environments. IEEE Transactions on Communications, 2013, 61, 3943-3952.	7.8	68