Giuseppina Cerrato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694311/publications.pdf

Version: 2024-02-01

66343 106344 5,615 162 42 65 citations h-index g-index papers 168 168 168 5606 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Visible light responsive heterostructure HTDMA-BiPO4 modified clays for effective diclofenac sodium oxidation: Role of interface interactions and basal spacing. Journal of Water Process Engineering, 2022, 48, 102788.	5.6	14
2	Sustainable purification of phosphoric acid contaminated with Cr(VI) by Ag/Ag3PO4 coated activated carbon/montmorillonite under UV and solar light: Materials design and photocatalytic mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107870.	6.7	22
3	Photocatalytic behaviour of Ag3PO4, Fe3O4 and Ag3PO4/Fe3O4 heterojunction towards the removal of organic pollutants and Cr(VI) from water: Efficiency and light-corrosion deactivation. Inorganic Chemistry Communication, 2022, 141, 109516.	3.9	18
4	Unveiling the acetone sensing mechanism by <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">WO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> chemiresistors through a joint theory-experiment approach. Electrochimica Acta, 2021, 371, 137611.	5.2	21
5	Direct measurement and modeling of spontaneous charge migration across anatase–brookite nanoheterojunctions. Journal of Materials Chemistry A, 2021, 9, 7782-7790.	10.3	14
6	Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts, 2021, 11, 349.	3. 5	7
7	Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrasonics Sonochemistry, 2021, 75, 105615.	8.2	26
8	Oxidative Inactivation of SARS-CoV-2 on Photoactive AgNPs@TiO2 Ceramic Tiles. International Journal of Molecular Sciences, 2021, 22, 8836.	4.1	20
9	See & Eat! Using E-books to Promote Vegetable Eating Among Preschoolers: Findings From an Italian Sample. Frontiers in Psychology, 2021, 12, 712416.	2.1	1
10	Bismuth Oxyhalides for NOx Degradation under Visible Light: The Role of the Chloride Precursor. Catalysts, $2021,11,81.$	3.5	4
11	Fungal resistance on photocatalytic ceramic surfaces: The ultimate role of the metal in the Ag@TiO2 photocatalyst under dark and light conditions. , 2021, , 649-660.		1
12	Structural and Functional Behaviour of Ce-Doped Wide-Bandgap Semiconductors for Photo-Catalytic Applications. Catalysts, 2021, 11, 1209.	3.5	0
13	Solar Light Photoactive Floating Polyaniline/TiO2 Composites for Water Remediation. Nanomaterials, 2021, 11, 3071.	4.1	10
14	Photocatalytic degradation of NOx and ethanol in the gas phase by spray dried Ce-TiO2. Journal of Environmental Chemical Engineering, 2021, 9, 106813.	6.7	9
15	Titania–Montmorillonite for the Photocatalytic Removal of Contaminants from Water: Adsorb & Contaminant from Water: Adsorb & Contamina	0.5	13
16	Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinic acid production. Catalysis Today, 2020, 345, 183-189.	4.4	13
17	ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 2020, 10, 1735.	4.1	6
18	Morphology, Surface Structure and Water Adsorption Properties of TiO2 Nanoparticles: A Comparison of Different Commercial Samples. Molecules, 2020, 25, 4605.	3.8	29

#	Article	IF	Citations
19	Understanding Solid–Gas Reaction Mechanisms by Operando Soft X-Ray Absorption Spectroscopy at Ambient Pressure. Journal of Physical Chemistry C, 2020, 124, 14202-14212.	3.1	19
20	Role of Synthetic Parameters on the Structural and Optical Properties of N,Sn-Copromoted Nanostructured TiO2: A Combined Ti K-Edge and Sn L2,3-Edges X-ray Absorption Investigation. Nanomaterials, 2020, 10, 1224.	4.1	4
21	Sustainable photocatalytic porcelain grés slabs active under LED light for indoor depollution and bacteria reduction., 2020,, 59-71.		1
22	Digitally Printed AgNPs Doped TiO2 on Commercial Porcelain-Gr \tilde{A} "s Tiles: Synergistic Effects and Continuous Photocatalytic Antibacterial Activity. Surfaces, 2020, 3, 11-25.	2.3	18
23	Exploring SnxTi1â^'xO2 Solid Solutions Grown onto Graphene Oxide (GO) as Selective Toluene Gas Sensors. Nanomaterials, 2020, 10, 761.	4.1	22
24	Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2. Ultrasonics Sonochemistry, 2019, 51, 462-468.	8.2	25
25	Correlation preparation parameters/activity for microTiO2 decorated with SilverNPs for NOx photodegradation under LED light. Applied Catalysis B: Environmental, 2019, 253, 218-225.	20.2	29
26	Photocatalytic porcelain grà \otimes s large slabs digitally coated with AgNPs-TiO2. Environmental Science and Pollution Research, 2019, 26, 36117-36123.	5.3	8
27	An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials. Applied Surface Science, 2019, 483, 1081-1089.	6.1	25
28	Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity. Ceramics International, 2019, 45, 20910-20920.	4.8	19
29	Insights on the photocatalytic degradation processes supported by TiO2/WO3 systems. The case of ethanol and tetracycline. Catalysis Today, 2019, 328, 210-215.	4.4	32
30	Micro-TiO2 coated glass surfaces safely abate drugs in surface water. Journal of Hazardous Materials, 2019, 363, 328-334.	12.4	22
31	Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today, 2018, 313, 40-46.	4.4	31
32	Micro-sized TiO2 as photoactive catalyst coated on industrial porcelain gr \tilde{A} 's tiles to photodegrade drugs in water. Environmental Science and Pollution Research, 2018, 25, 20348-20353.	5.3	17
33	Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrasonics Sonochemistry, 2018, 40, 282-288.	8.2	80
34	Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval. Nanomaterials, 2018, 8, 686.	4.1	22
35	Silica Gel-Immobilized 1,2-Benzenedisulfonimide: A New and Versatile Brønsted Acid Heterogeneous Catalyst. ChemistrySelect, 2017, 2, 3178-3183.	1.5	2
36	Facile synthesis of ZnO nano-structures: Morphology influence on electronic properties. Sensors and Actuators B: Chemical, 2017, 249, 581-589.	7.8	30

#	Article	IF	CITATIONS
37	Sulfadiazine-based drug delivery systems prepared by an effective sol–gel process. Journal of Sol-Gel Science and Technology, 2017, 83, 618-626.	2.4	6
38	Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water. Environmental Science and Pollution Research, 2017, 24, 12646-12654.	5.3	26
39	Micro-sized TiO2 catalyst in powder form and as coating on porcelain grès tile for the photodegradation of phenol as model pollutant for water phase. Advanced Material Science, 2017, 2, .	0.3	6
40	Formulation of Innovative Hybrid Chitosan/TiO2- and Chitosan/SiO2-Based Drug-Delivery Systems., 2016,, 201-226.		1
41	In-situ infrared spectroscopy as a non-invasive technique to study carbon sequestration at high pressure and high temperature. International Journal of Greenhouse Gas Control, 2016, 51, 126-135.	4.6	3
42	Cation Dependent Carbonate Speciation and the Effect of Water. Journal of Physical Chemistry C, 2016, 120, 17570-17578.	3.1	6
43	Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light. Ultrasonics Sonochemistry, 2016, 31, 295-301.	8.2	25
44	Alkylsilane–SiO ₂ Hybrids. A Concerted Picture of Temperature Effects in Vapor Phase Functionalization. Journal of Physical Chemistry C, 2015, 119, 15390-15400.	3.1	35
45	Nano and micro-TiO ₂ for the photodegradation of ethanol: experimental data and kinetic modelling. RSC Advances, 2015, 5, 53419-53425.	3.6	37
46	The Role of the Nano/Microstructure in the Case of the Photodegradation of Two Model VOC Pollutants Using Commercial TiO ₂ . Energy and Environment Focus, 2015, 4, 226-231.	0.3	1
47	Photo-mineralization of noxious o-toluidine water pollutant by nano-ZnO: The role of the oxide surface texture on the kinetic path. Applied Catalysis B: Environmental, 2015, 178, 233-240.	20.2	12
48	Pigmentary TiO2: A challenge for its use as photocatalyst in NOx air purification. Chemical Engineering Journal, 2015, 261, 76-82.	12.7	46
49	Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: A way to enhance its photocatalytic activity under visible light. Applied Catalysis B: Environmental, 2015, 178, 124-132.	20.2	31
50	Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-grÃ's tiles. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 27-31.	3.9	46
51	Ni/ZrO2 catalysts in ethanol steam reforming: Inhibition of coke formation by CaO-doping. Applied Catalysis B: Environmental, 2014, 150-151, 12-20.	20.2	111
52	Engineered organic/inorganic hybrids for superhydrophobic coatings by wet and vapour procedures. Journal of Materials Science, 2014, 49, 2734-2744.	3.7	20
53	Oxidative esterification of renewable furfural on gold-based catalysts: Which is the best support?. Journal of Catalysis, 2014, 309, 241-247.	6.2	72
54	New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases. Langmuir, 2014, 30, 4703-4715.	3.5	19

#	Article	IF	Citations
55	Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 57-63.	3.9	103
56	Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. Journal of Materials Science: Materials in Medicine, 2014, 25, 2243-2253.	3.6	8
57	C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light. Applied Catalysis B: Environmental, 2014, 160-161, 152-160.	20.2	68
58	Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 2014, 146, 123-130.	20.2	178
59	Towards the controlled release of metal nanoparticles from biomaterials: Physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses. Applied Surface Science, 2013, 283, 240-248.	6.1	23
60	Gold-containing bioactive glasses: a solid-state synthesis to produce alternative biomaterials for bone implantations. Journal of the Royal Society Interface, 2013, 10, 20121040.	3.4	16
61	On the adsorption/reaction of acetone on pure and sulfate-modified zirconias. Physical Chemistry Chemical Physics, 2013, 15, 13446.	2.8	7
62	Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO 2 –TiO 2 systems. Journal of Catalysis, 2013, 297, 17-26.	6.2	65
63	Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Materials Science and Engineering C, 2013, 33, 1132-1142.	7.3	102
64	Oxidation of 1,2â€Cyclohexanediol to Adipic Acid with Oxygen: A Study Into Selectivityâ€Affecting Parameters. ChemCatChem, 2013, 5, 1998-2008.	3.7	30
65	Aerogel and xerogel WO3/ZrO2 samples for fine chemicals production. Microporous and Mesoporous Materials, 2013, 165, 134-141.	4.4	21
66	Self-cleaning measurements on tiles manufactured with micro-sized photoactive TiO2. Advances in Materials Research (South Korea), 2013, 2, 65-75.	0.6	14
67	New Surface Properties in Porcelain Gres Tiles with a Look to Human and Environmental Safety. Advances in Materials Science and Engineering, 2012, 2012, 1-8.	1.8	8
68	Block copolymers for the synthesis of pure and Bi-promoted nano-TiO2 as active photocatalysts. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	18
69	Role of Pr on the Semiconductor Properties of Nanotitania. An Experimental and First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 23083-23093.	3.1	19
70	On the Role of Morphology of CoFeO ₄ Spinel in Methanol Anaerobic Oxidation. Journal of Physical Chemistry C, 2012, 116, 14998-15009.	3.1	23
71	Immobilization of soybean peroxidase on aminopropyl glass beads: Structural and kinetic studies. Biochemical Engineering Journal, 2012, 67, 28-34.	3.6	18
72	Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. Journal of Materials Science: Materials in Medicine, 2012, 23, 2867-2879.	3.6	115

#	Article	IF	CITATIONS
73	Structureâ€Directing Agents for the Synthesis of TiO ₂ â€Based Drugâ€Delivery Systems. Chemistry - A European Journal, 2012, 18, 10653-10660.	3.3	10
74	Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts. Applied Catalysis B: Environmental, 2012, 111-112, 225-232.	20.2	165
75	Novel bio-conjugate materials: soybean peroxidase immobilized on bioactive glasses containing Au nanoparticles. Journal of Materials Chemistry, 2011, 21, 10970.	6.7	13
76	On the dissolution/reaction of small-grain Bioglass \hat{A}^{\otimes} 45S5 and F-modified bioactive glasses in artificial saliva (AS). Applied Surface Science, 2011, 257, 4185-4195.	6.1	34
77	Effect of textural properties on the drug delivery behaviour of nanoporous TiO2 matrices. Microporous and Mesoporous Materials, 2011, 139, 189-196.	4.4	34
78	The balance of acid, basic and redox sites in Mg/Me -mixed oxides: The effect on catalytic performance in the gas-phase alkylation of m-cresol with methanol. Journal of Catalysis, 2010, 270, 125-135.	6.2	32
79	Controlled release of metoprolol tartrate from nanoporous silica matrices. Microporous and Mesoporous Materials, 2010, 132, 258-267.	4.4	35
80	Nanostructured TiO ₂ modified by perfluoropolyethers: Gas phase photocatalytic activity. Journal of Materials Research, 2010, 25, 96-103.	2.6	5
81	Functionalization of Sol Gel Bioactive Glasses Carrying Au Nanoparticles: Selective Au Affinity for Amino and Thiol Ligand Groups. Langmuir, 2010, 26, 18600-18605.	3.5	32
82	Bioactive Glasses Containing Au Nanoparticles. Effect of Calcination Temperature on Structure, Morphology, and Surface Properties. Langmuir, 2010, 26, 10303-10314.	3.5	28
83	Gas-phase phenol methylation over Mg/Me/O (Me = Al, Cr, Fe) catalysts: mechanistic implications due to different acid–base and dehydrogenating properties. Dalton Transactions, 2010, 39, 8527.	3.3	31
84	Hybrid Organic–Inorganic Silica Gel Carriers with Controlled Drugâ€Delivery Properties. Chemistry - A European Journal, 2009, 15, 12043-12049.	3.3	24
85	Liquid phase reactions catalyzed by Fe- and Mn-sulphated ZrO2. Applied Catalysis A: General, 2009, 360, 137-144.	4.3	7
86	Adsorption of Acetone on Nonporous and Mesoporous Silica. Journal of Physical Chemistry C, 2009, 113, 16517-16529.	3.1	17
87	Modification to the Surface Properties of Titania by Addition of India. Journal of Physical Chemistry C, 2009, 113, 20401-20410.	3.1	7
88	Study on reuse of metal oxide-promoted sulphated zirconia in acylation reactions. Applied Catalysis B: Environmental, 2008, 84, 363-371.	20.2	11
89	One-step synthesis of silica gel used in the controlled release of drug. Studies in Surface Science and Catalysis, 2008, 174, 489-492.	1.5	3
90	Ibuprofen delivery behaviour on MCM-41: influence of organic groups amount. Studies in Surface Science and Catalysis, 2008, , 429-432.	1.5	5

#	Article	IF	Citations
91	Ga-promoted sulfated zirconia systems. II. Surface features and catalytic activity. Microporous and Mesoporous Materials, 2006, 94, 40-49.	4.4	10
92	Gas and liquid phase reactions on MCM-41/SZ catalysts. Applied Catalysis B: Environmental, 2006, 67, 24-33.	20.2	22
93	Ga2O3-promoted sulfated zirconia systems: Morphological, structural and redox properties. Microporous and Mesoporous Materials, 2005, 81, 19-29.	4.4	35
94	Formation of a Nanostructured Layer on Bioglass Particles of Different Sizes Immersed in Tris-Buffered Solution. N2Adsorption and HR-TEM/EDS Analysis. Langmuir, 2005, 21, 9327-9333.	3.5	15
95	Gas- and Liquid-Phase Reactions on Sulphated Zirconia Prepared by Precipitation. Catalysis Letters, 2004, 94, 193-198.	2.6	24
96	Structural and Surface Characterization of Pure and Sulfated Iron Oxides. Chemistry of Materials, 2003, 15, 675-687.	6.7	70
97	2,6-Dimethylpyridine Adsorption on Zirconia and Sulfated Zirconia Systems. An FTIR and Microcalorimetric Study. Langmuir, 2003, 19, 5344-5356.	3.5	26
98	On the Adsorption of Acetonitrile on Pure and Sulfated Tetragonal Zirconia (t-ZrO2). Langmuir, 2003, 19, 5708-5721.	3.5	12
99	Surface Characterization of \hat{I}^3 -Ga2O3: \hat{A} A Microcalorimetric and IR Spectroscopic Study of CO Adsorption. Langmuir, 2002, 18, 10255-10260.	3.5	30
100	Surface features and catalytic activity of sulfated zirconia catalysts from hydrothermal precursors. Physical Chemistry Chemical Physics, 2002, 4, 3136-3145.	2.8	43
101	Acetonitrile adsorption as an IR spectroscopic probe for surface acidity/basicity of pure and modified zirconias. Physical Chemistry Chemical Physics, 2002, 4, 676-687.	2.8	23
102	Title is missing!. Topics in Catalysis, 2002, 19, 259-269.	2.8	35
103	Crystal structure and morphology of the NdSr 2 RuCu 2 O y compound. European Physical Journal B, 2002, 26, 51-55.	1.5	6
104	Alumina-Promoted Sulfated Zirconia System:Â Structure and Microstructure Characterization. Chemistry of Materials, 2001, 13, 1634-1641.	6.7	57
105	Revisiting the Use of 2,6-Dimethylpyridine Adsorption as a Probe for the Acidic Properties of Metal Oxides. Langmuir, 2001, 17, 7053-7060.	3.5	70
106	Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2. Thermochimica Acta, 2001, 379, 147-161.	2.7	72
107	Catalytic activity and some related spectral features of yttria-stabilised cubic sulfated zirconia. Catalysis Letters, 2001, 73, 113-119.	2.6	32
108	Title is missing!. Topics in Catalysis, 2001, 15, 53-61.	2.8	28

#	Article	IF	CITATIONS
109	Al2O3-promoted sulfated zirconia catalysts for the isomerization of n-butane. Studies in Surface Science and Catalysis, 2000, 130, 2375-2380.	1.5	15
110	Correlation between surface nanotopography and sintering behaviour of zirconia powders. Nanotechnology, 1999, 10, 90-96.	2.6	3
111	Titrating surface acidity of sulfated zirconia catalysts: is the adsorption of pyridine a suitable probe?. Physical Chemistry Chemical Physics, 1999, 1, 2825-2831.	2.8	33
112	Role of Surface Hydration State on the Nature and Reactivity of Copper Ions in Cu-ZrO2Catalysts: N2O Decomposition. Journal of Catalysis, 1998, 179, 111-128.	6.2	58
113	Surface acidity of metal oxides. Combined microcalorimetric and IR-spectroscopic studies of variously dehydrated systems. Thermochimica Acta, 1998, 312, 63-77.	2.7	87
114	Infrared spectroscopic study of surface species and of CO adsorption: a probe for the surface characterization of sulfated zirconia catalysts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 55, 95-107.	3.9	18
115	IR study of the low temperature adsorption of CO on tetragonal zirconia and sulfated tetragonal zirconia. Applied Surface Science, 1998, 126, 107-128.	6.1	42
116	FTIR, UVâ^'Vis, and HRTEM Study of Au/ZrO2 Catalyst:  Reduced Reactivity in the COâ^'O2 Reaction of Electron-Deficient Gold Sites Present on the Used Samples. Journal of Physical Chemistry B, 1998, 102, 5733-5736.	2.6	77
117	Some surface chemical features of Pt catalysts supported on Al2O3 and CeO2/Al2O3. Studies in Surface Science and Catalysis, 1998, 116, 601-610.	1.5	0
118	Microcalorimetric Characterization of Structural and Chemical Heterogeneity of Superacid SO4/ZrO2 Systems. Langmuir, 1997, 13, 888-894.	3.5	43
119	On the strength of Lewis- and Bro/nsted-acid sites at the surface of sulfated zirconia catalysts. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1179-1184.	1.7	56
120	A surface study of monoclinic zirconia (m-ZrO2). Surface Science, 1997, 377-379, 50-55.	1.9	46
121	Platinum-Promoted and Unpromoted Sulfated Zirconia Catalysts Prepared by a One-Step Aerogel Procedure. Journal of Catalysis, 1997, 165, 172-183.	6.2	60
122	Platinum-Promoted and Unpromoted Sulfated Zirconia Catalysts Prepared by a One-Step Aerogel Procedure. Journal of Catalysis, 1997, 167, 522-532.	6.2	76
123	Title is missing!. Catalysis Letters, 1997, 49, 25-34.	2.6	33
124	Surface characterization of monoclinic ZrO2. Applied Surface Science, 1997, 115, 53-65.	6.1	81
125	Morphological and Surface Chemical Characterization of Fine ZrO2 Particles for Ceramic Applications., 1996,, 609-622.		1
126	Aerogel Synthesis as an Improved Method for the Preparation of Platinum-Promoted Zirconiaâ€"Sulfate Catalysts. , 1996, , 143-163.		1

#	Article	IF	Citations
127	Platinum promoted zirconia-sulfate catalysts: one-pot preparation, physical properties and catalytic activity. Catalysis Letters, 1996, 36, 129-133.	2.6	54
128	On the role of the calcination step in the preparation of active (superacid) sulfated zirconia catalysts. Catalysis Letters, 1996, 41, 101-109.	2.6	68
129	Catalytic behavior and nature of active sites in copper-on-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27, 265-270.	4.4	58
130	Structural, morphological and surface chemical features of Al2O3 catalyst supports stabilized with CeO2. Studies in Surface Science and Catalysis, 1995, 96, 361-373.	1.5	17
131	Crystal Phase, Spectral Features, and Catalytic Activity of Sulfate-Doped Zirconia Systems. Journal of Catalysis, 1995, 157, 109-123.	6.2	187
132	Spectroscopic, structural and microcalorimetric study of stishovite, a non-pathogenic polymorph of SiO2. Journal of Materials Chemistry, 1995, 5, 1935.	6.7	13
133	Amount and nature of sulfates at the surface of sulfate-doped zirconia catalysts. Journal of Materials Chemistry, 1995, 5, 353.	6.7	59
134	Surface characterization of yttria-stabilized tetragonal ZrO2. Part 2.â€"Adsorption of CO. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 113-123.	1.7	30
135	Surface characterization of yttria-stabilized tetragonal ZrO2. Part 3.â€"CO2adsorption and the CO2â€"CO interaction. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 125-132.	1.7	35
136	Nitric Oxide Reduction by CO on Cu/TiO2 Catalysts. Journal of Catalysis, 1994, 146, 449-459.	6.2	60
137	On the Acid-Catalyzed Isomerization of Light Paraffins over a ZrO2/SO4 System: The Effect of Hydration. Journal of Catalysis, 1994, 149, 181-188.	6.2	156
138	Isomerization ofn-butane on sulfated zirconia: Evidence for the dominant role of Lewis acidity on the catalytic activity. Catalysis Letters, 1994, 26, 339-344.	2.6	80
139	Surface characterization of yttria-stabilized tetragonal ZrO2 Part 1. Structural, morphological, and surface hydration features. Materials Chemistry and Physics, 1994, 37, 243-257.	4.0	97
140	Brosted Acidity of a Superacid Sulfate-Doped ZrO2 System. The Journal of Physical Chemistry, 1994, 98, 12373-12381.	2.9	97
141	The lewis acidity of sulfate-doped ZrO2: FTIR and microcalorimetric study of CO uptake at \hat{a}^4 300 K on low S-loaded specimens. Surface Science, 1994, 307-309, 1206-1213.	1.9	23
142	On the Surface Acidity of Some Sulfate-Doped ZrO2 Catalysts. Journal of Catalysis, 1993, 142, 349-367.	6.2	174
143	Vibrational and thermodynamic features of CO adsorbed onto Al2O3 and Ca-doped Al2O3. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 235-240.	1.7	11
144	Structural and morphological modifications of sintering microcrystalline TiO2: an XRD, HRTEM and FTIR study. Applied Surface Science, 1993, 70-71, 200-205.	6.1	54

#	Article	IF	Citations
145	Surface characterization of tetragonal ZrO2. Applied Surface Science, 1993, 65-66, 257-264.	6.1	30
146	Band resolution techniques and Fourier transform infrared spectra of adsorbed species. Vibrational Spectroscopy, 1993, 4, 273-284.	2.2	28
147	A characterization of the surface acidity of HfO2by FTIR spectroscopy of adsorbed species, electron microscopy and adsorption microcalorimetry. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1269-1288.	0.1	20
148	Lewis and $Br\tilde{A}_{s}$, nsted acidity at the surface of sulfate-doped ZrO2 catalysts. Catalysis Today, 1993, 17, 505-515.	4.4	124
149	MINUIT subroutine for spectra deconvolution. Computer Physics Communications, 1993, 74, 119-141.	7.5	23
150	X-ray diffraction, high-resolution transmission electron microscopy and Fourier-transform infrared study of Ca-doped Al2O3. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 135.	1.7	42
151	Infrared study of some surface properties of boehmite (\hat{I}^3 -AlO2H). Journal of the Chemical Society, Faraday Transactions, 1992, 88, 339-348.	1.7	84
152	Infrared surface characterization of AlF3. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2239.	1.7	14
153	Surface characterization of some TiO2-based pigments. Part 3.â€"Coating of the pigments. Journal of Materials Chemistry, 1992, 2, 341-355.	6.7	16
154	End-on surface coordinated (adsorbed) CO2: a specific ligand for surface Lewis acidic centres. Materials Chemistry and Physics, 1991, 29, 447-456.	4.0	37
155	IR surface characterization of some titania-based pigments. 1. Preparation of pigmentary materials. Chemistry of Materials, 1991, 3, 132-142.	6.7	8
156	An IR surface characterization of some Tio2-based pigments II. Last preparation stages of the pigmentary materials. Materials Chemistry and Physics, 1991, 28, 151-174.	4.0	4
157	Pyridine adsorption reveals high-coordinated cationic centres at the surface of microcrystalline ZnO. Catalysis Letters, 1991, 10, 357-363.	2.6	12
158	On the use of pyridine adsorption as an analytical tool in surface chemistry. Langmuir, 1990, 6, 1810-1812.	3.5	75
159	Synthesis and Characterisation of Strontium and Magnesium Co-Substituted Biphasic Calcium Phosphates. Key Engineering Materials, 0, 529-530, 88-93.	0.4	3
160	A New Frontier of Photocatalysis Employing Micro-Sized TiO2: Air/Water Pollution Abatement and Self-Cleaning/ Antibacterial Applications. , 0, , .		9
161	Photocatalytic TiO2: From Airless Jet Spray Technology to Digital Inkjet Printing. , 0, , .		3
162	Balanced acidity by microwave-assisted ion-exchange of ZSM-5 zeolite as a catalyst for transformation of glucose to levulinic acid. Biomass Conversion and Biorefinery, 0, , .	4.6	3