Tsutomu Miyasaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009, 131, 6050-6051.	13.7	17,777
2	Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012, 338, 643-647.	12.6	9,249
3	Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 1997, 276, 1395-1397.	12.6	2,490
4	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	47.7	2,009
5	Towards stable and commercially available perovskite solar cells. Nature Energy, 2016, 1, .	39.5	941
6	Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity. Advanced Energy Materials, 2018, 8, 1700677.	19.5	459
7	Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chemistry Letters, 2012, 41, 397-399.	1.3	329
8	Low-temperature SnO ₂ -based electron selective contact for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10837-10844.	10.3	324
9	Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 164-169.	4.6	283
10	Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 2020, 49, 2869-2885.	38.1	282
11	Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH ₃ NH ₃) ₃ Bi ₂ I ₉ for Photovoltaic Applications. ACS Applied Materials & Interfaces, 2016, 8, 14542-14547.	8.0	270
12	Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor. Science, 1992, 255, 342-344.	12.6	265
13	Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A, 2018, 6, 2219-2230.	10.3	229
14	Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO[sub 2] Layers. Journal of the Electrochemical Society, 2004, 151, A1767.	2.9	219
15	The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. Applied Physics Letters, 2004, 85, 3932-3934.	3.3	218
16	Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 2015, 44, 720-729.	1.3	216
17	Stability of solution-processed MAPbI ₃ and FAPbI ₃ layers. Physical Chemistry Chemical Physics, 2016, 18, 13413-13422.	2.8	208
18	Sulfateâ€Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkaliâ€Doped TiO ₂ Electronâ€Transporting Layers. Advanced Functional Materials, 2018, 28, 1706287.	14.9	208

#	Article	IF	CITATIONS
19	Stabilization of α-CsPbI ₃ in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI ₃ . Chemistry of Materials, 2018, 30, 6668-6674.	6.7	199
20	Perovskite Solar Cells: Can We Go Organicâ€Free, Leadâ€Free, and Dopantâ€Free?. Advanced Energy Materials, 2020, 10, 1902500.	19.5	198
21	Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania. Journal of the Electrochemical Society, 2007, 154, A455.	2.9	185
22	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	30.8	181
23	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	10.3	173
24	Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes. Journal of the American Chemical Society, 1978, 100, 6657-6665.	13.7	168
25	Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Science Advances, 2020, 6, .	10.3	163
26	<i>V</i> _{OC} Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI ₂ Br Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 9725-9734.	13.7	162
27	Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum. Applied Physics Letters, 2015, 106, .	3.3	158
28	Poly(4â€Vinylpyridine)â€Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. ChemSusChem, 2017, 10, 2473-2479.	6.8	157
29	Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment. IScience, 2018, 2, 148-155.	4.1	156
30	Severe Morphological Deformation of Spiro-OMeTAD in (CH ₃ NH ₃)PbI ₃ Solar Cells at High Temperature. ACS Energy Letters, 2017, 2, 1760-1761.	17.4	155
31	Chlorophyll Derivative-Sensitized TiO ₂ Electron Transport Layer for Record Efficiency of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 2207-2211.	13.7	154
32	Antibody-Mediated Bacteriorhodopsin Orientation for Molecular Device Architectures. Science, 1994, 265, 762-765.	12.6	150
33	Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 187-191.	3.9	149
34	A high-voltage dye-sensitized photocapacitor of a three-electrode system. Chemical Communications, 2005, , 3346.	4.1	148
35	The Interface between FTO and the TiO ₂ Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9817-9823.	8.0	131
36	Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 623-630.	6.2	129

#	Article	IF	CITATIONS
37	Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 2021, 9, 1574-1582.	10.3	126
38	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	14.9	125
39	Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO ₂ Films. Journal of Physical Chemistry Letters, 2011, 2, 262-269.	4.6	121
40	Highly efficient quantum conversion at chlorophyll a–lecithin mixed monolayer coated electrodes. Nature, 1979, 277, 638-640.	27.8	114
41	Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2Layers. Chemistry Letters, 2002, 31, 1250-1251.	1.3	110
42	Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO ₂ -Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2224-2229.	8.0	104
43	100 °C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes. ChemSusChem, 2016, 9, 2604-2608.	6.8	103
44	Stability and Degradation in Hybrid Perovskites: Is the Glass Half-Empty or Half-Full?. Journal of Physical Chemistry Letters, 2018, 9, 3000-3007.	4.6	102
45	Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 3375.	2.8	100
46	Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes. Chemistry Letters, 2007, 36, 190-191.	1.3	97
47	Conductive polymer–carbon–imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells. Chemical Communications, 2006, , 1733-1735.	4.1	94
48	Invalidity of Band-Gap Engineering Concept for Bi ³⁺ Heterovalent Doping in CsPbBr ₃ Halide Perovskite. Journal of Physical Chemistry Letters, 2018, 9, 5408-5411.	4.6	88
49	The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2016, 4, 4464-4471.	10.3	86
50	Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. Journal of Materials Chemistry A, 2017, 5, 13439-13447.	10.3	86
51	Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018, 91, 1058-1068.	3.2	84
52	Highly efficient plastic-based quasi-solid-state dye-sensitized solarÂcells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. Journal of Power Sources, 2014, 245, 411-417.	7.8	82
53	Lead(II) Propionate Additive and a Dopant-Free Polymer Hole Transport Material for CsPbl ₂ Br Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1292-1299.	17.4	81
54	Efficiency Enhancement of ZnO-Based Dye-Sensitized Solar Cells by Low-Temperature TiCl ₄ Treatment and Dye Optimization. Journal of Physical Chemistry C, 2013, 117, 10949-10956.	3.1	80

#	Article	IF	CITATIONS
55	Similar Structural Dynamics for the Degradation of CH ₃ NH ₃ PbI ₃ in Air and in Vacuum. ChemPhysChem, 2015, 16, 3064-3071.	2.1	80
56	Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion. RSC Advances, 2017, 7, 9456-9460.	3.6	80
57	Nb2O5 Blocking Layer for High Open-circuit Voltage Perovskite Solar Cells. Chemistry Letters, 2015, 44, 829-830.	1.3	79
58	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	10.3	77
59	Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications, 2015, 51, 13294-13297.	4.1	76
60	Role of Metal Oxide Electronâ€Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells. ChemSusChem, 2016, 9, 2559-2566.	6.8	76
61	Magnesiumâ€doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 2640-2647.	6.8	74
62	Organic Dye/Cs ₂ AgBiBr ₆ Double Perovskite Heterojunction Solar Cells. Journal of the American Chemical Society, 2021, 143, 14877-14883.	13.7	74
63	Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor. Applied Optics, 1993, 32, 6371.	2.1	73
64	Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. Journal of Materials Chemistry, 2009, 19, 5009.	6.7	72
65	Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer. Chemistry Letters, 2015, 44, 610-612.	1.3	72
66	HC(NH ₂) ₂ PbI ₃ as a thermally stable absorber for efficient ZnO-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8435-8443.	10.3	72
67	Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers. Scientific Reports, 2016, 6, 34319.	3.3	72
68	PbI ₂ -Based Dipping-Controlled Material Conversion for Compact Layer Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 18156-18162.	8.0	71
69	A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide. Chemical Communications, 2005, , 1886.	4.1	69
70	Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 153122.	3.3	69
71	A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. Journal of Physical Chemistry Letters, 2015, 6, 1773-1779.	4.6	69
72	Improvement in durability of flexible plastic dye-sensitized solar cell modules. Solar Energy Materials and Solar Cells, 2009, 93, 836-839.	6.2	68

#	Article	IF	CITATIONS
73	Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Convergence, 2017, 4, 26.	12.1	67
74	A SnOx–brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. Chemical Communications, 2016, 52, 8119-8122.	4.1	65
75	Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 2416-2421.	7.8	64
76	UV Light-assisted Chemical Vapor Deposition of TiO2for Efficiency Development at Dye-sensitized Mesoporous Layers on Plastic Film Electrodes. Chemistry Letters, 2003, 32, 1076-1077.	1.3	62
77	Analysis of Sputtering Damage on <i>I</i> – <i>V</i> Curves for Perovskite Solar Cells and Simulation with Reversed Diode Model. Journal of Physical Chemistry C, 2016, 120, 28441-28447.	3.1	61
78	Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. Chemical Communications, 2017, 53, 4366-4369.	4.1	61
79	Dopantâ€Free Polymer HTMâ€Based CsPbl ₂ Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Advanced Functional Materials, 2021, 31, 2103614.	14.9	60
80	Dopantâ€Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells. ChemSusChem, 2016, 9, 2862-2869.	6.8	58
81	Photoactive Znâ€Chlorophyll Hole Transporterâ€Sensitized Leadâ€Free Cs ₂ AgBiBr ₆ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000166.	5.8	58
82	Polythiophene-Based Mesoporous Counter Electrodes for Plastic Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1195.	2.9	55
83	Performance enhancement of AgBi ₂ 1 ₇ solar cells by modulating a solvent-mediated adduct and tuning remnant Bil ₃ in one-step crystallization. Chemical Communications, 2019, 55, 4031-4034.	4.1	54
84	Sensitized Yb ³⁺ Luminescence in CsPbCl ₃ Film for Highly Efficient Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1903142.	11.2	54
85	Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface. Thin Solid Films, 1992, 210-211, 146-149.	1.8	53
86	Mechanism of Photocurrent Generation from Bacteriorhodopsin on Gold Electrodes. Journal of Physical Chemistry B, 1999, 103, 234-238.	2.6	51
87	Conductive Polymer-based Mesoscopic Counterelectrodes for Plastic Dye-sensitized Solar Cells. Chemistry Letters, 2007, 36, 804-805.	1.3	51
88	Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells. Journal of Power Sources, 2016, 309, 1-10.	7.8	49
89	First Evidence of CH ₃ NH ₃ PbI ₃ Optical Constants Improvement in a N ₂ Environment in the Range 40–80 °C. Journal of Physical Chemistry C, 2017, 121, 7703-7710.	3.1	49
90	Excitonic Feature in Hybrid Perovskite CH3NH3PbBr3 Single Crystals. Chemistry Letters, 2015, 44, 852-854.	1.3	48

#	Article	IF	CITATIONS
91	Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells. Solar Energy, 2016, 136, 379-384.	6.1	48
92	Investigating the Growth of CH ₃ NH ₃ PbI ₃ Thin Films on RFâ€&puttered NiO <i>_x</i> for Inverted Planar Perovskite Solar Cells: Effect of CH ₃ NH ₃ ⁺ Halide Additives versus CH ₃ NH ₃ ⁺ Halide Vapor Annealing. Advanced Materials Interfaces, 2020, 7, 1901748.	3.7	48
93	Ionic Liquid-Assisted MAPbI ₃ Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 21194-21206.	8.0	47
94	Solution-Processed Transparent Nickel-Mesh Counter Electrode with in-Situ Electrodeposited Platinum Nanoparticles for Full-Plastic Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 8083-8091.	8.0	45
95	Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations. ACS Applied Materials & Interfaces, 2018, 10, 9547-9554.	8.0	45
96	Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode. Journal of Materials Chemistry A, 2013, 1, 13759.	10.3	44
97	Brookite TiO ₂ as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20952-20957.	10.3	43
98	Plastic and Solid-state Dye-sensitized Solar Cells Incorporating Single-wall Carbon Nanotubes. Chemistry Letters, 2007, 36, 466-467.	1.3	42
99	Controlled Crystal Grain Growth in Mixed Cation–Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 18739-18747.	8.0	42
100	Microstructural analysis and optical properties of the halide double perovskite Cs2BiAgBr6 single crystals. Chemical Physics Letters, 2018, 694, 18-22.	2.6	42
101	Proton Irradiation Tolerance of High-Efficiency Perovskite Absorbers for Space Applications. Journal of Physical Chemistry Letters, 2019, 10, 6990-6995.	4.6	42
102	Plastic Dye-sensitized Photovoltaic Cells and Modules Based on Low-temperature Preparation of Mesoscopic Titania Electrodes. Electrochemistry, 2007, 75, 2-12.	1.4	40
103	Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 36-40.	3.9	40
104	Thiocyanate Containing Two-Dimensional Cesium Lead Iodide Perovskite, Cs ₂ PbI ₂ (SCN) ₂ : Characterization, Photovoltaic Application, and Degradation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 42363-42371.	8.0	40
105	PHOTOELECTROCHEMICAL STUDY OF CHLOROPHYLLâ€∢i>a MULTILAYERS ON SnO ₂ ELECTRODE. Photochemistry and Photobiology, 1980, 32, 217-222.	2.5	39
106	High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions. Chemical Communications, 2016, 52, 4784-4787.	4.1	39
107	Water-based Dye-sensitized Solar Cells: Interfacial Activation of TiO2Mesopores in Contact with Aqueous Electrolyte for Efficiency Development. Chemistry Letters, 2003, 32, 1154-1155.	1.3	37
108	Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss. APL Materials, 2014, 2, .	5.1	37

#	Article	IF	CITATIONS
109	Revealing a Discontinuity in the Degradation Behavior of CH ₃ NH ₃ Pbl ₃ during Thermal Operation. Journal of Physical Chemistry C, 2017, 121, 13577-13585.	3.1	37
110	Impacts of Heterogeneous TiO ₂ and Al ₂ O ₃ Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4608-4615.	8.0	36
111	MAClâ€Assisted Ge Doping of Pbâ€Hybrid Perovskite: A Universal Route to Stabilize High Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903299.	19.5	36
112	Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method. Journal of Applied Physics, 2017, 121,	2.5	34
113	Light Energy Conversion and Storage with Soft Carbonaceous Materials that Solidify Mesoscopic Electrochemical Interfaces. Chemistry Letters, 2007, 36, 480-487.	1.3	33
114	Alternation of Charge Injection and Recombination in Dye-Sensitized Solar Cells by the Addition of Nonconjugated Bridge to Organic Dyes. Journal of Physical Chemistry C, 2013, 117, 2024-2031.	3.1	33
115	Determination of Chloride Content in Planar CH3NH3Pbl3â^' <i>x</i> Cl <i>x</i> Solar Cells by Chemical Analysis. Chemistry Letters, 2015, 44, 1089-1091.	1.3	33
116	Enhancement of the hole conducting effect of NiO by a N ₂ blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode. Nanoscale, 2017, 9, 5475-5482.	5.6	33
117	High Efficiency and Robust Performance of Organo Lead Perovskite Solar Cells with Large Grain Absorbers Prepared in Ambient Air Conditions. Chemistry Letters, 2015, 44, 321-323.	1.3	32
118	Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication. Journal of Materials Chemistry A, 2018, 6, 9583-9591.	10.3	30
119	Ambient Fabrication of 126 μm Thick Complete Perovskite Photovoltaic Device for High Flexibility and Performance. ACS Applied Energy Materials, 2018, 1, 6741-6747.	5.1	30
120	Efficiency Enhancement in ZnO:Al-Based Dye-Sensitized Solar Cells Structured with Sputtered TiO ₂ Blocking Layers. Journal of Physical Chemistry C, 2014, 118, 6576-6585.	3.1	29
121	Thermal Degradation Analysis of Sealed Perovskite Solar Cell with Porous Carbon Electrode at 100 °C for 7000â€h. Energy Technology, 2019, 7, 245-252.	3.8	29
122	Low-Temperature Synthesized Nb-Doped TiO ₂ Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning. ACS Applied Materials & Interfaces, 2020, 12, 15175-15182.	8.0	29
123	Low-temperature and Ambient Air Processes of Amorphous SnO <i>_x</i> -based Mixed Halide Perovskite Planar Solar Cell. Chemistry Letters, 2017, 46, 382-384.	1.3	28
124	Concerted Ion Migration and Diffusionâ€Induced Degradation in Leadâ€Free Ag ₃ Bil ₆ Rudorffite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100077.	5.8	28
125	Trend of Perovskite Solar Cells: Dig Deeper to Build Higher. Journal of Physical Chemistry Letters, 2015, 6, 2315-2317.	4.6	27
126	Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 9-16.	5.1	27

#	Article	IF	CITATIONS
127	Molecular organization of bacterio- rhodopsin films in optoelectronic devices. Advanced Materials, 1995, 7, 590-594.	21.0	26
128	Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (11). ECS Meeting Abstracts, 2008, MA2008-02, 27-27.	0.0	26
129	ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1461-1467.	12.9	26
130	Chlorin-sensitized High-efficiency Photovoltaic Cells that Mimic Spectral Response of Photosynthesis. Electrochemistry, 2008, 76, 140-143.	1.4	25
131	An Ultrathin Sputtered TiO ₂ Compact Layer for Mesoporous Brookite-based Plastic CH ₃ NH ₃ Pbl _{3â~'} <i>_x</i> Cl <i>_x</i>	1.3	25
132	A single-phase brookite TiO ₂ nanoparticle bridge enhances the stability of perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 2009-2017.	4.9	25
133	Passivation of Bulk and Interface Defects in Sputtered-NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts. ACS Applied Energy Materials, 2021, 4, 4530-4540.	5.1	25
134	Phenethylamineâ€Based Interfacial Dipole Engineering for High <i>V</i> _{oc} Triple ation Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102856.	19.5	25
135	Photoelectrochemical studies on the monolayer assemblies of chlorophyll a on the quantum efficiency of photocurrent generation. Surface Science, 1980, 101, 541-550.	1.9	24
136	Photoelectrochemical Verification of Protonâ€Releasing Groups in Bacteriorhodopsin. Photochemistry and Photobiology, 1998, 68, 400-406.	2.5	24
137	Fabrication and Efficiency Enhancement of Water-based Dye-Sensitized Solar Cells by Interfacial Activation of TiO ₂ Mesopores. Electrochemistry, 2004, 72, 310-316.	1.4	24
138	Solar Water Splitting Utilizing a SiC Photocathode, a BiVO ₄ Photoanode, and a Perovskite Solar Cell. ChemSusChem, 2017, 10, 4420-4423.	6.8	24
139	Residual PbI ₂ Beneficial in the Bulk or at the Interface? An Investigation Study in Sputtered NiO <i>_x</i> Hole-Transport-Layer-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6215-6221.	5.1	24
140	Evaluation of radiation tolerance of perovskite solar cell for use in space. , 2015, , .		23
141	Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications. APL Materials, 2017, 5, .	5.1	23
142	Anticancer Effect of Dye-sensitized TiO2Nanocrystals by Polychromatic Visible Light Irradiation. Chemistry Letters, 2006, 35, 496-497.	1.3	21
143	Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite. ACS Energy Letters, 2020, 5, 785-792.	17.4	20
144	Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?. Journal of Materials Research, 2021, 36, 1794-1804.	2.6	20

#	Article	IF	CITATIONS
145	Effect of Thin TiO2 Buffer Layer on the Performance of Plastic-based Dye-sensitized Solar Cells Using Indoline Dye. Electrochemistry, 2008, 76, 158-160.	1.4	19
146	A high voltage organic–inorganic hybrid photovoltaic cell sensitized with metal–ligand interfacial complexes. Chemical Communications, 2012, 48, 9900.	4.1	19
147	Photoelectrochemical Behavior of Purple Membrane Langmuir–Blodgett Films at the Electrode–Electrolyte Interface. Chemistry Letters, 1991, 20, 1645-1648.	1.3	18
148	Nickel Oxide Hybridized Carbon Film as an Efficient Mesoscopic Cathode for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2013, 160, H155-H159.	2.9	18
149	A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells. Journal of Power Sources, 2015, 283, 351-357.	7.8	18
150	Biosupramolecular bacteriochlorin aggregates as hole-transporters for perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 639-644.	3.9	18
151	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	3.7	18
152	Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 33631-33637.	8.0	18
153	Photovoltaic Properties of Two-dimensional (CH ₃ (CH ₂) ₃ NH ₃) ₂ PbI ₄ Perovskite Crystals Oriented with TiO ₂ Nanowire Array. Chemistry Letters, 2017, 46, 1204-1206.	1.3	17
154	All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer. Nano Convergence, 2017, 4, 18.	12.1	17
155	Photoelectrochemical Behavior of Chlorophyll a-Lipid Films on a Platinum Electrode in an Aqueous Electrolyte. Bulletin of the Chemical Society of Japan, 1981, 54, 957-961.	3.2	16
156	Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells. Materials Chemistry Frontiers, 2019, 3, 2357-2362.	5.9	16
157	Benzodithiophene-thienopyrroledione-thienothiophene-based random copolymeric hole transporting material for perovskite solar cell. Chemical Engineering Journal, 2020, 382, 122830.	12.7	16
158	Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 2019, 14, 100125.	4.7	15
159	A novel photoreactive amphiphile of nitrophenylazide for immobilization of bioactive proteins. Thin Solid Films, 1989, 180, 73-83.	1.8	14
160	Solid-State Thin-Film Dye-Sensitized Solar Cell Co-Sensitized with Methylammonium Lead Bromide Perovskite. Bulletin of the Chemical Society of Japan, 2018, 91, 754-760.	3.2	14
161	Quantum cutting-induced near-infrared luminescence of Yb3+ and Er3+ in a layer structured perovskite film. Journal of Chemical Physics, 2020, 153, 194704.	3.0	14
162	Design of Intelligent Optical Sensors with Organized Bacteriorhodopsin Films. Japanese Journal of Applied Physics, 1995, 34, 3920-3924.	1.5	13

#	Article	IF	CITATIONS
163	Thermo-evaporated pentacene and perylene as hole transport materials for perovskite solar cells. Dyes and Pigments, 2019, 160, 285-291.	3.7	13
164	Photoluminescence Excitation Spectroscopy of Defectâ€Related States in MAPbl ₃ Perovskite Single Crystals. Advanced Optical Materials, 2021, 9, 2001327.	7.3	13
165	Hybridization of SnO ₂ and an In-Situ-Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene Electron Transport Bilayer for High-Performance Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 13672-13680.	6.7	13
166	Polymer-based Engineering for High-efficiency Plastic Dye-sensitized Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 269-277.	0.3	12
167	Evaluation of Damage Coefficient for Minority-Carrier Diffusion Length of Triple-Cation Perovskite Solar Cells under 1 MeV Electron Irradiation for Space Applications. Journal of Physical Chemistry C, 2021, 125, 13131-13137.	3.1	12
168	A Metallocene Molecular Complex as Visibleâ€Light Absorber for Highâ€Voltage Organic–Inorganic Hybrid Photovoltaic Cells. ChemPhysChem, 2014, 15, 1028-1032.	2.1	11
169	Anatase and Brookite Electron Collectors from Binder-free Precursor Pastes for Low-temperature Solution-processed Perovskite Solar Cells. Chemistry Letters, 2016, 45, 143-145.	1.3	11
170	Fullerene Multiadducts as Electron Collection Layers for Perovskite Solar Cells. Chemistry Letters, 2017, 46, 101-103.	1.3	11
171	Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance. Coatings, 2017, 7, 36.	2.6	11
172	Spontaneous Synthesis of Highly Crystalline TiO ₂ Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 17195-17202.	8.0	11
173	Photomultiplying Visible Light Detection by Halide Perovskite Nanoparticles Hybridized with an Organo Eu Complex. Journal of Physical Chemistry Letters, 2019, 10, 5935-5942.	4.6	11
174	Amperometric Glucose Sensor with Glucose Oxidase Immobilized on SnO2Electrode via a Monolayer of a Photoreactive Nitrophenylazide Derivative. Chemistry Letters, 1990, 19, 627-630.	1.3	10
175	Buffer Effect on the Photoelectrochemical Response of Bacteriorhodopsin Analytical Sciences, 1999, 15, 365-369.	1.6	10
176	Generation of Faradaic Photocurrents at the Bacteriorhodopsin Film Electrodeposited on a Platinum Electrode. Electrochemistry, 2000, 68, 865-868.	1.4	10
177	FAPbBr ₃ perovskite solar cells with <i>V</i> _{OC} values over 1.5 V by controlled crystal growth using tetramethylenesulfoxide. Journal of Materials Chemistry A, 2022, 10, 672-681.	10.3	10
178	Oriented polypeptide monolayers by rapid spontaneous condensation of amphiphilic amino acid esters. Thin Solid Films, 1992, 210-211, 393-396.	1.8	9
179	The proton uptake channel of bacteriorhodopsin as studied by a photoelectrochemical method. Bioelectrochemistry, 2001, 53, 111-118.	4.6	9
180	Outâ€ofâ€Glovebox Integration of Recyclable Europiumâ€Doped CsPbI ₃ in Tripleâ€Mesoscopic Carbonâ€Based Solar Cells Exceeding 9% Efficiency. Solar Rrl, 2022, 6, .	5.8	9

#	Article	IF	CITATIONS
181	Response to "Comment on â€~The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy'―[Appl. Phys. Lett. 86, 196101 (2005)]. Applied Physics Letters, 2005, 86, 196102.	3.3	8
182	Photocurrent Enhancement of Formamidinium Lead Trihalide Mesoscopic Perovskite Solar Cells with Large Size TiO2 Nanoparticles. Chemistry Letters, 2015, 44, 1619-1621.	1.3	8
183	Full Efficiency Recovery in Hole-Transporting Layer-Free Perovskite Solar Cells With Free-Standing Dry-Carbon Top-Contacts. Frontiers in Chemistry, 2020, 8, 200.	3.6	8
184	Formation of CsPbI ₃ γâ€Phase at 80 °C by Europiumâ€Assisted Snowplow Effect. Advanced Energy and Sustainability Research, 2021, 2, 2100091.	5.8	8
185	Blackâ€Yellow Bandgap Tradeâ€Off During Thermal Stability Tests in Lowâ€Temperature Euâ€Doped CsPbl ₃ . Solar Rrl, 2022, 6, .	5.8	8
186	Quantum Conversion Enhancement with TiO _{<i>x</i>} Compact Layers for ITOâ€Plasticâ€Filmâ€Based Lowâ€Temperatureâ€Processed Dyeâ€Sensitized Photoelectrodes. ChemPhysChem, 15, 1190-1193.	20114,	7
187	Improved Electrical and Structural Stability in HTL-Free Perovskite Solar Cells by Vacuum Curing Treatment. Energies, 2020, 13, 3953.	3.1	7
188	Photoelectrochemical Systems Involving Solid-Liquid Interfacial Layers of Chlorophylls. ACS Symposium Series, 1981, , 231-251.	0.5	6
189	Photoelectrochemical observations on chlorophyll- carotene interactions in a lipid bilayer film. Thin Solid Films, 1983, 102, 173-185.	1.8	6
190	Lifetime of M Intermediate in the D96N Mutant of Bacteriorhodopsin Determined by a Photoelectrochemical Method. Chemistry Letters, 1999, 28, 769-770.	1.3	6
191	Generation of Photoinduced Steady Current by Purple Membrane Langmuir-Blodgett Films at Electrode-Electrolyte Interface. Chemistry Letters, 2003, 32, 144-145.	1.3	6
192	Dye-Sensitized Solar Cells Built on Plastic Substrates by Low-Temperature Preparation of Semiconductor Films. Key Engineering Materials, 2010, 451, 1-19.	0.4	6
193	Tetrahydrofuran as an Oxygen Donor Additive to Enhance Stability and Reproducibility of Perovskite Solar Cells Fabricated in High Relative Humidity (50%) Atmosphere. Energy Technology, 2020, 8, 1900990.	3.8	6
194	Optical behaviour of γ-black CsPbI ₃ phases formed by quenching from 80 °C and 325 °C. JPhys Materials, 2021, 4, 034011.	4.2	6
195	Chiral Polypeptide Monolayers from Self-Condensation of Amphiphilic Amino Acid Ester. Effect of Chirality on the Membrane Structure. Chemistry Letters, 1991, 20, 969-972.	1.3	5
196	pH-Dependent Photocurrent Response from Bacteriorhodopsin at Electrode-Electrolyte Interfaces. Chemistry Letters, 1998, 27, 961-962.	1.3	5
197	Fabrication of dye-sensitized plastic film electrodes for flexible solar cells based on electrophoretic deposition techniques. , 2004, 5215, 219.		5
198	The photo charge of a bacterioRhodopsin electrochemical cells measured by a charge amplifier. IEICE Electronics Express, 2011, 8, 505-511.	0.8	5

#	Article	IF	CITATIONS
199	Tri-functional Nb2O5 nano-islands coated on an indium tin oxide layer for a highly efficient dye-sensitized plastic photoanode. Journal of Power Sources, 2013, 240, 753-758.	7.8	5
200	MgO-hybridized TiO2 interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells. Applied Physics Letters, 2014, 104, .	3.3	5
201	Rapid Self-Polycondensation of Amphiphilic Amino Acid Esters in Ordered Molecular Assemblies. An Morphological Evidence for Lateral Growth of Polypeptide at the Air–Water Interface. Chemistry Letters, 1991, 20, 619-622.	1.3	4
202	Biomolecular image sensor of bacteriorhodopsin patterned by electrodeposition. , 0, , .		4
203	Electron irradiation induced aging effects on radiative recombination properties of quadruple cation organic-inorganic perovskite layers. Emergent Materials, 2020, 3, 133-160.	5.7	4
204	Drastic Change of Surface Morphology of Cesium–Formamidinium Perovskite Solar Cells by Antisolvent Processing. ACS Applied Energy Materials, 2021, 4, 1069-1077.	5.1	4
205	Photosensitive protein patterning with electrophoretic deposition. IEICE Electronics Express, 2010, 7, 779-784.	0.8	3
206	Solution-processed tBu4-ZnPc:C61bulk heterojunction organic photovoltaic cells. Japanese Journal of Applied Physics, 2016, 55, 032301.	1.5	3
207	Hysteresis Characteristics and Device Stability. , 2016, , 255-284.		3
208	Magnetic properties of Nd-Fe-B-Zr bulk nanocomposite magnets prepared by spark plasma sintering method. Journal of Physics: Conference Series, 2008, 106, 012014.	0.4	2
209	Quantum Conversion Management of the Sensitized Semiconductor Electrodes: Strategies against Energy Dissipation. Electrochemistry, 2010, 78, 960-969.	1.4	2
210	Planar perovskite solar cells using triazatruxene-based hyperbranched conjugated polymers and small molecule as hole-transporting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112228.	3.9	2
211	Sensitivity of mixed cation/halide perovskites to evaporation kinetics of DMSO at early stage. Journal of Materials Chemistry A, 0, , .	10.3	2
212	Evolution of Organic and Hybrid Photovoltaics on Interdiscipline of Science. Electrochemistry, 2017, 85, 221-221.	1.4	1
213	MAPbI3 Deposition by LV-PSE on TiO2 for Photovoltaic Application. Frontiers in Electronics, 2021, 2, .	3.2	1
214	Photoelectrochemical Evidence for the Role of an Ion Pair of Asp-212 and Arg-82 in the Proton Pumping of Bacteriorhodopsin. Electrochemistry, 2004, 72, 2-4.	1.4	1
215	Bacteriochlorin aggregates as dopant-free hole-transporting materials for perovskite solar cells. Organic Electronics, 2022, 108, 106596.	2.6	1
216	On the Azide Effect Regenerating the Proton Channel of Mutated Bacteriorhodpsins. Chemistry Letters, 2000, 29, 212-213.	1.3	0

#	Article	IF	CITATIONS
217	Plastic Dye-sensitized Solar Cells Now Face Practical Use. Kobunshi, 2008, 57, 520-520.	0.0	Ο
218	AE Monitoring of Damage Accumulation in Transparent Conductive Oxide Film under the Mechanical Strain. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 774-779.	0.5	0
219	Fast and Economic Preparation of Pt-Based Counter Electrode for Highly Efficient Dye-Sensitized Solar Cell. ECS Meeting Abstracts, 2013, , .	0.0	Ο
220	Soft X-ray irradiation effect on surface structure of CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> perovskite in multi-film stack device. , 2016, , .		0
221	Structural and Optical Behaviour of MAPbI <inf>3</inf> Layers in Nitrogen and Humid Air. , 2018, , .		0
222	Lightâ€Emitting Diodes: Sensitized Yb ³⁺ Luminescence in CsPbCl ₃ Film for Highly Efficient Nearâ€Infrared Lightâ€Emitting Diodes (Adv. Sci. 4/2020). Advanced Science, 2020, 7, 2070021.	11.2	0
223	Engineering on high Voc perovskite photovoltaic cells and smart applications to IoT power devices. , 0, , .		0
224	Control of molecular condition by ultrasonic vibration at constant electric field. Journal of Advanced Science, 2003, 15, 38-39.	0.1	0
225	A Photoelectrochemical Evidence for the Role of Glutamate at the Extracellular Proton-releasing Residue Site in Bacteriorhodopsin. Electrochemistry, 2003, 71, 100-104.	1.4	0
226	J band formation of the MC independent film by electric control of molecular orientation of L film. Journal of Advanced Science, 2004, 16, 35-37.	0.1	0
227	Electric field orientation control of the LB molecule which carries out optical-electronic functional increase. Journal of Advanced Science, 2005, 17, 170-172.	0.1	0
228	Dye-Sensitized Electrode, Photoanode. , 2014, , 363-368.		0
229	Photorechargeable Cell. , 2014, , 1587-1591.		Ο
230	Photoelectric Behavior of Bacteriorhodopsin Thin Films at the Solid/Liquid Interface. Thin Films, 1995, 20, 279-292.	0.1	0
231	214 Mechanical study with AE Technique for Fracture Mechanism in Transparent Conductive Film under Tensile Loading. The Proceedings of the Materials and Processing Conference, 2015, 2015.23, _214-1214-4	0.0	0
232	Characterization of Adhesion in Ceramics Coating by AE Technique. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, S0420105.	0.0	0
233	Stable and Efficient Perovskite Solar Cells Fabricated Using Aqueous Lead Nitrate Precursor: Interpretation of the Conversion Mechanism and Renovation of the Sequential Deposition. SSRN Electronic Journal, 0, , .	0.4	0
234	High sensitivity photodetector based on a metal complex hybridized structure with perovskite absorbers. , 0, , .		0

#	Article	IF	CITATIONS
235	Compositional engineering of cost efficient durable perovskite solar cells. , 0, , .		0
236	Focusing key directions of perovskite photovoltaic R&Ds towards industrialization. , 0, , .		0
237	Highly Efficient Near-Infrared Luminescence of Yb(III) doped Perovskite Thin Films for Light-Emitting Device Applications. , 0, , .		Ο
238	Exceptional Progress of Perovskite Solar Cell. Seikei-Kakou, 2019, 31, 456-457.	0.0	0
239	Fundamental and Development of Perovskite Solar Cells. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 762-765.	0.0	Ο
240	Interfacial engineering for high voltage performance of perovskite solar cells. , 0, , .		0
241	Interfacial molecular engineering for high Voc perovskite photovoltaic cells. , 0, , .		Ο
242	Why the gamma-phase of CsPbI3 can be formed at 80 C by adding Europium. , 0, , .		0
243	Black-Yellow Bandgap Trade-off during Thermal Stability Tests in Low-Temperature Eu-doped CsPbI3. , 0, , .		0
244	Perovskite Solar Cells Challenging the Top of Photovoltaics. Denki Kagaku, 2022, 90, 88-93.	0.0	0