Takumi Koshiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694015/publications.pdf Version: 2024-02-01

TAKUMI KOSHIBA

#	Article	IF	CITATIONS
1	Structural Basis of Mitochondrial Tethering by Mitofusin Complexes. Science, 2004, 305, 858-862.	12.6	756
2	Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17963-17968.	7.1	226
3	Structural Evidence for Endocrine Disruptor Bisphenol A Binding to Human Nuclear Receptor ERRÂ. Journal of Biochemistry, 2007, 142, 517-524.	1.7	206
4	Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Science Signaling, 2009, 2, ra47.	3.6	206
5	Mitochondrial Membrane Potential Is Required for MAVS-Mediated Antiviral Signaling. Science Signaling, 2011, 4, ra7.	3.6	203
6	Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nature Communications, 2014, 5, 4713.	12.8	181
7	Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3631-40.	7.1	176
8	Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nature Communications, 2019, 10, 4624.	12.8	123
9	Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. Journal of Cell Science, 2013, 126, 176-185.	2.0	117
10	The Prefusogenic Intermediate of HIV-1 gp41 Contains Exposed C-peptide Regions. Journal of Biological Chemistry, 2003, 278, 7573-7579.	3.4	111
11	Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host and Microbe, 2018, 23, 254-265.e7.	11.0	109
12	Mitochondrial-mediated antiviral immunity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 225-232.	4.1	98
13	The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-11² Secretion. Journal of Virology, 2016, 90, 4105-4114.	3.4	85
14	Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. IScience, 2020, 23, 101631.	4.1	81
15	Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a Role of the Coiled-Coil Region. IScience, 2019, 19, 1065-1078.	4.1	72
16	Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathogens, 2015, 11, e1005244.	4.7	63
17	Factor C Acts as a Lipopolysaccharide-Responsive C3 Convertase in Horseshoe Crab Complement Activation. Journal of Immunology, 2008, 181, 7994-8001.	0.8	59
18	A Structural Perspective on the Interaction between Lipopolysaccharide and Factor C, a Receptor Involved in Recognition of Gram-negative Bacteria. Journal of Biological Chemistry, 2007, 282, 3962-3967.	3.4	55

Такимі Козніва

#	Article	IF	CITATIONS
19	Structure and Thermodynamics of the Extraordinarily Stable Molten Globule State of Canine Milk Lysozymeâ€,‡. Biochemistry, 2000, 39, 3248-3257.	2.5	51
20	Structure-Function Analysis of the Yeast Mitochondrial Rho GTPase, Gem1p. Journal of Biological Chemistry, 2011, 286, 354-362.	3.4	46
21	Transglutaminase-Catalyzed Protein-Protein Cross-Linking Suppresses the Activity of the NF-κB–Like Transcription Factor Relish. Science Signaling, 2013, 6, ra61.	3.6	44
22	RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity. Scientific Reports, 2017, 7, 5379.	3.3	44
23	Protein Crosslinking by Transglutaminase Controls Cuticle Morphogenesis in Drosophila. PLoS ONE, 2010, 5, e13477.	2.5	43
24	Two Conserved Amino Acids within the NSs of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Are Essential for Anti-interferon Activity. Journal of Virology, 2018, 92, .	3.4	35
25	Hydrogen exchange study of canine milk lysozyme: Stabilization mechanism of the molten globule. Proteins: Structure, Function and Bioinformatics, 2000, 40, 579-589.	2.6	31
26	Influenza Virus-Induced Oxidized DNA Activates Inflammasomes. IScience, 2020, 23, 101270.	4.1	29
27	Expression of a synthetic gene encoding canine milk lysozyme in Escherichia coli and characterization of the expressed protein. Protein Engineering, Design and Selection, 1999, 12, 429-435.	2.1	27
28	A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1017-1027.	4.1	27
29	The microRNAs miR-302b and miR-372 regulate mitochondrial metabolism via the SLC25A12 transporter, which controls MAVS-mediated antiviral innate immunity. Journal of Biological Chemistry, 2020, 295, 444-457.	3.4	26
30	MAVS is energized by Mff which senses mitochondrial metabolism via AMPK for acute antiviral immunity. Nature Communications, 2020, 11, 5711.	12.8	25
31	An Arthropod Cuticular Chitin-binding Protein Endows Injured Sites with Transglutaminase-dependent Mesh. Journal of Biological Chemistry, 2007, 282, 37316-37324.	3.4	23
32	A Cysteine-rich Protein from an Arthropod Stabilizes Clotting Mesh and Immobilizes Bacteria at Injury Sites. Journal of Biological Chemistry, 2007, 282, 33545-33552.	3.4	23
33	Microbe-Specific C3b Deposition in the Horseshoe Crab Complement System in a C2/Factor B-Dependent or -Independent Manner. PLoS ONE, 2012, 7, e36783.	2.5	21
34	Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade. Journal of Biological Chemistry, 2015, 290, 19379-19386.	3.4	18
35	Characterization of Kinetic Folding Intermediates of Recombinant Canine Milk Lysozyme by Stopped-Flow Circular Dichroismâ€. Biochemistry, 2005, 44, 6685-6692.	2.5	17
36	The N-terminal Arg Residue Is Essential for Autocatalytic Activation of a Lipopolysaccharide-responsive Protease Zymogen. Journal of Biological Chemistry, 2014, 289, 25987-25995.	3.4	16

Такимі Козніва

#	Article	IF	CITATIONS
37	Mitochondria and antiviral innate immunity. International Journal of Biochemistry and Molecular Biology, 2011, 2, 257-62.	0.1	14
38	Energetics of three-state unfolding of a protein: canine milk lysozyme. Protein Engineering, Design and Selection, 2001, 14, 967-974.	2.1	13
39	Thermodynamic Analysis of the Activation Mechanism of the GCSF Receptor Induced by Ligand Binding. Biochemistry, 2004, 43, 2458-2464.	2.5	11
40	Factor G Utilizes a Carbohydrate-Binding Cleft That Is Conserved between Horseshoe Crab and Bacteria for the Recognition of β-1,3- <scp>d</scp> -Glucans. Journal of Immunology, 2009, 183, 3810-3818.	0.8	11
41	Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells. Journal of Biochemistry, 2020, 167, 225-231.	1.7	11
42	Mitochondrial reactive zones in antiviral innate immunity. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129839.	2.4	8
43	Folding mechanism of canine milk lysozyme studied by circular dichroism and fluorescence spectroscopy. Spectroscopy, 2003, 17, 183-193.	0.8	7
44	Crystallization of a 2:2 complex of granulocyte-colony stimulating factor (GCSF) with the ligand-binding region of the GCSF receptor. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 788-790.	0.7	5
45	Oxidative folding of human lysozyme: effects of the loss of two disulfide bonds and the introduction of a calcium-binding site. The Protein Journal, 2001, 20, 293-303.	1.1	1
46	Assignment of 1H, 13C, and 15N resonances of canine milk lysozyme. Journal of Biomolecular NMR, 2001, 19, 387-388.	2.8	1
47	Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer. Biophysics and Physicobiology, 2015, 12, 31-35.	1.0	1
48	An Organelle Membrane Fusion; Mitochondrial Fusion. Seibutsu Butsuri, 2005, 45, 243-246.	0.1	1
49	1P302 A structural analysis of the MAVS-regulatory mechanism using BRET(27. Bioimaging,Poster,The) Tj ETQq1	1 8.7843 0.1	814 rgBT /Ov
50	Evaluation of Mitochondrial Respiratory Activity Using a FRET-based Indicator for Intracellular ATP. Seibutsu Butsuri, 2017, 57, 268-270.	0.1	0
51	Analysis of Mitochondrial Interactome in Living Cells. Seibutsu Butsuri, 2020, 60, 241-243.	0.1	0