Stefania Garzoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1693778/publications.pdf

Version: 2024-02-01

84 papers

1,454 citations

304743 22 h-index 434195 31 g-index

85 all docs 85 docs citations

85 times ranked 1692 citing authors

#	Article	IF	CITATIONS
1	Effect of malting on nutritional and antioxidant properties of the seeds of two industrial hemp (Cannabis sativa L.) cultivars. Food Chemistry, 2022, 370, 131348.	8.2	16
2	Anti-Mold Effectiveness of a Green Emulsion Based on Citrus aurantium Hydrolate and Cinnamomum zeylanicum Essential Oil for the Modern Paintings Restoration. Microorganisms, 2022, 10, 205.	3.6	5
3	GC-MS and SPME-GC/MS Analysis and Bioactive Potential Evaluation of Essential Oils from Two Viola Species Belonging to the V. calcarata Complex. Separations, 2022, 9, 39.	2.4	6
4	Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil. Journal of Fungi (Basel, Switzerland), 2022, 8, 140.	3.5	3
5	Chemical volatile composition and phytotoxic potential of Daphne gnidium L. leaves. Sustainable Chemistry and Pharmacy, 2022, 25, 100607.	3.3	O
6	Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods, 2022, 11, 589.	4.3	7
7	Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha's Hand Fruit. Molecules, 2022, 27, 1666.	3.8	5
8	A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L Plants, 2022, 11, 891.	3.5	13
9	<i>Solanum linnaeanum</i> Leaves: Chemical Profiling of VOCs and Effects on Seed Germination and Early Growth of Monocots and Dicots. Chemistry and Biodiversity, 2022, 19, e202100975.	2.1	1
10	From Hops to Craft Beers: Production Process, VOCs Profile Characterization, Total Polyphenol and Flavonoid Content Determination and Antioxidant Activity Evaluation. Processes, 2022, 10, 517.	2.8	14
11	Chemical Profiling and Characterization of Different Cultivars of Cannabis sativa L. Inflorescences by SPME-GC-MS and UPLC-MS. Separations, 2022, 9, 90.	2.4	14
12	Foeniculum vulgare Miller, a New Chemotype from Montenegro. Plants, 2022, 11, 42.	3.5	6
13	Harpagophytum procumbens Root Extract Mediates Anti-Inflammatory Effects in Osteoarthritis Synoviocytes through CB2 Activation. Pharmaceuticals, 2022, 15, 457.	3.8	8
14	Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms, 2022, 10, 920.	3.6	3
15	Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms, 2022, 10, 887.	3.6	11
16	Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods, 2022, 11, 1455.	4.3	10
17	Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.). Plants, 2022, 11, 1510.	3.5	5
18	Ultrastructural Damages to H1N1 Influenza Virus Caused by Vapor Essential Oils. Molecules, 2022, 27, 3718.	3.8	5

#	Article	IF	CITATIONS
19	GC-MS investigation and antiproliferative activities of extracts from male and female flowers of Schinus molle L Natural Product Research, 2021, 35, 1923-1927.	1.8	8
20	Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals, 2021, 14, 134.	3.8	27
21	Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity. Pharmaceuticals, 2021, 14, 243.	3.8	18
22	Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants, 2021, 10, 707.	3 . 5	31
23	Effect of gaseous ozone treatment on the aroma and clove rot by Fusarium proliferatum during garlic postharvest storage. Heliyon, 2021, 7, e06634.	3.2	16
24	Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Discovery, 2021, 7, 127.	4.7	24
25	Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods, 2021, 10, 1768.	4.3	31
26	A Comparative Study of the Chemical Composition by SPME-GC/MS and Antiradical Activity of Less Common Citrus Species. Molecules, 2021, 26, 5378.	3.8	15
27	Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) R.K. Jansen and its nanoemulsion: Insecticidal, cytotoxic and anti-inflammatory activities. Industrial Crops and Products, 2021, 172, 114027.	5.2	20
28	Chemical characterization by GC/MS analysis of Lactuca tatarica (L.) C.A.Mey. aerial parts and seeds. Natural Product Research, 2021, , 1-5.	1.8	2
29	Chemical Composition and Biological Activities of Tunisian Ziziphus lotus Extracts: Evaluation of Drying Effect, Solvent Extraction, and Extracted Plant Parts. Plants, 2021, 10, 2651.	3 . 5	6
30	Chemical composition and antimicrobial activity of essential oil of <i>Helichrysum italicum</i> (Roth) G. Don fil. (Asteraceae) from Montenegro. Natural Product Research, 2020, 34, 445-448.	1.8	27
31	Variation in essential oil content and composition of Ridolfia segetum Moris based on 30-hour prolonged fractionated extraction procedure. Natural Product Research, 2020, 34, 1923-1926.	1.8	4
32	Lavandula x intermedia essential oil and hydrolate: Evaluation of chemical composition and antibacterial activity before and after formulation in nanoemulsion. Industrial Crops and Products, 2020, 145, 112068.	5.2	53
33	Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers, 2020, 12, 2650.	3.7	19
34	Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants, 2020, 9, 632.	5.1	16
35	Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics, 2020, 9, 858.	3.7	4
36	Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. Pharmaceutics, 2020, 12, 678.	4.5	32

3

#	Article	IF	CITATIONS
37	Antiarthritic Effects of a Root Extract from Harpagophytum procumbens DC: Novel Insights into the Molecular Mechanisms and Possible Bioactive Phytochemicals. Nutrients, 2020, 12, 2545.	4.1	19
38	Essential Oils Biofilm Modulation Activity, Chemical and Machine Learning Analysis—Application on Staphylococcus aureus Isolates from Cystic Fibrosis Patients. International Journal of Molecular Sciences, 2020, 21, 9258.	4.1	17
39	Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals, 2020, 13, 352.	3.8	15
40	Phytocomplex Characterization and Biological Evaluation of Powdered Fruits and Leaves from Elaeagnus angustifolia. Molecules, 2020, 25, 2021.	3.8	22
41	Potent In Vitro Activity of Citrus aurantium Essential Oil and Vitis vinifera Hydrolate Against Gut Yeast Isolates from Irritable Bowel Syndrome Patients—The Right Mix for Potential Therapeutic Use. Nutrients, 2020, 12, 1329.	4.1	12
42	Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Scientific Reports, 2020, 10, 2653.	3.3	30
43	Apoptotic Effects on HL60 Human Leukaemia Cells Induced by Lavandin Essential Oil Treatment. Molecules, 2020, 25, 538.	3.8	15
44	Antimicrobial Testing of Schinus molle (L.) Leaf Extracts and Fractions Followed by GC-MS Investigation of Biological Active Fractions. Molecules, 2020, 25, 1977.	3.8	11
45	Antiproliferative Properties of Papaver rhoeas Ovule Extracts and Derived Fractions Tested on HL60 Leukemia Human Cells. Molecules, 2020, 25, 1850.	3.8	5
46	Experimental Data Based Machine Learning Classification Models with Predictive Ability to Select in Vitro Active Antiviral and Non-Toxic Essential Oils. Molecules, 2020, 25, 2452.	3.8	19
47	Chemical investigations of male and female leaf extracts from <i>Schinus molle</i> L Natural Product Research, 2019, 33, 1980-1983.	1.8	9
48	Chemical Investigation of a Biologically Active <i>Schinus molle</i> L. Leaf Extract. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-6.	1.6	13
49	Liquid and Vapour Phase of Lavandin (Lavandula $\tilde{A}-$ intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules, 2019, 24, 2701.	3.8	30
50	Baseâ€Assisted Conversion of Protonated <scp>D</scp> â€Fructose to 5â€HMF: Searching for Gasâ€Phase Green Models. ChemistryOpen, 2019, 8, 1190-1198.	1.9	10
51	Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against Staphylococcus Species. Molecules, 2019, 24, 890.	3.8	41
52	In-Vitro Evaluation of Different Antimicrobial Combinations with and without Colistin Against Carbapenem-Resistant Acinetobacter Baumannii. Molecules, 2019, 24, 886.	3.8	12
53	Effective redox reactions by chromium oxide anions: Sulfur dioxide oxidation in the gas phase. International Journal of Mass Spectrometry, 2019, 436, 18-22.	1.5	10
54	Sulphur dioxide cooperation in hydrolysis reactions of vanadium oxide and hydroxide cluster dianions. New Journal of Chemistry, 2018, 42, 4008-4016.	2.8	7

#	Article	IF	CITATIONS
55	Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Industrial Crops and Products, 2018, 117, 317-321.	5.2	17
56	Essential oil extraction, chemical analysis and anti- <i>Candida</i> activity of <i>Foeniculum vulgare</i> Miller – new approaches. Natural Product Research, 2018, 32, 1254-1259.	1.8	34
57	<i>Sideritis romana</i> L. subsp. <i>purpurea</i> (Tal. ex Benth.) Heywood, a new chemotype from Montenegro. Natural Product Research, 2018, 32, 1056-1061.	1.8	9
58	SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural Sesquiterpene Î ² -Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery Design. Pharmaceutics, 2018, 10, 274.	4.5	32
59	High Potency of Melaleuca alternifolia Essential Oil against Multi-Drug Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus aureus. Molecules, 2018, 23, 2584.	3.8	62
60	From ascorbic acid to furan derivatives: the gas phase acid catalyzed degradation of vitamin C. Physical Chemistry Chemical Physics, 2018, 20, 17132-17140.	2.8	19
61	Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa. Molecules, 2018, 23, 482.	3.8	62
62	Vanadium Hydroxide Cluster Ions in the Gas Phase: Bondâ€Forming Reactions of Doublyâ€Charged Negative Ions by SO ₂ â€Promoted Vâ~O Activation. Chemistry - A European Journal, 2017, 23, 11752-11756.	3.3	21
63	Esential oils extraction: a 24-hour steam distillation systematic methodology. Natural Product Research, 2017, 31, 2387-2396.	1.8	56
64	Composition of the Essential Oil of Coristospermum cuneifolium and Antimicrobial Activity Evaluation. Planta Medica International Open, 2017, 4, e74-e81.	0.5	6
65	Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules, 2017, 22, 1395.	3.8	22
66	Essential Oil Extraction, Chemical Analysis and Anti-Candida Activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ballâ€"New Approaches. Molecules, 2017, 22, 203.	3.8	30
67	Vitamin C: an experimental and theoretical study on the gasâ€phase structure and ion energetics of protonated ascorbic acid. Journal of Mass Spectrometry, 2016, 51, 1146-1151.	1.6	4
68	Properties and limits of some essential oils: chemical characterisation, antimicrobial activity, interaction with antibiotics and cytotoxicity. Natural Product Research, 2016, 30, 1909-1918.	1.8	17
69	Antibacterial activity of essential oils mixture against PSA. Natural Product Research, 2016, 30, 412-418.	1.8	11
70	Acid-catalysed glucose dehydration in the gas phase: a mass spectrometric approach. Journal of Mass Spectrometry, 2015, 50, 228-234.	1.6	13
71	Ironâ€Promoted CC Bond Formation in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 14359-14362.	13.8	8
72	Multidisciplinary Approach to Determine the Optimal Time and Period for Extracting the Essential Oil from Mentha suaveolens Ehrh. Molecules, 2015, 20, 9640-9655.	3.8	33

#	Article	lF	CITATIONS
73	A mass spectrometric study of the acid-catalysed d-fructose dehydration in the gas phase. Carbohydrate Research, 2015, 413, 145-150.	2.3	18
74	Effects of <i>Mentha suaveolens </i> Essential Oil Alone or in Combination with Other Drugs in <i>Candida albicans </i> Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-9.	1.2	41
75	In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine, $2014, 21, 857-865$.	5.3	63
76	All the 2p-block elements in a molecule: experimental and theoretical studies of FBNCO and FBNCO+. Chemical Communications, 2014, 50, 13900-13903.	4.1	4
77	Gellan gum and polyethylene glycol dimethacrylate double network hydrogels with improved mechanical properties. Journal of Polymer Research, 2014, 21, 1.	2.4	25
78	The Mechanism of 2-Furaldehyde Formation from <scp>d</scp> -Xylose Dehydration in the Gas Phase. A Tandem Mass Spectrometric Study. Journal of the American Society for Mass Spectrometry, 2013, 24, 1082-1089.	2.8	11
79	Gasâ€phase basicity of 2â€furaldehyde. Journal of Mass Spectrometry, 2012, 47, 1488-1494.	1.6	5
80	Chemically Modified Multiwalled Carbon Nanotubes Electrodes with Ferrocene Derivatives through Reactive Landing. Journal of Physical Chemistry C, 2011, 115, 4863-4871.	3.1	23
81	Low-energy collisionally activated dissociation of pentose–borate complexes. International Journal of Mass Spectrometry, 2010, 289, 76-83. Gas-phiase ion chemistry of BF3/CH4 mixtures: Activation of methane by <mml:math altimg="si1.gif" co<="" control="" discounting="" of="" td="" the=""><td>1.5</td><td>8</td></mml:math>	1.5	8
82	display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.w3.org/1998/Math/MathML" xmlns:ja="http://www.wa.wa.wa.wa.wa.wa.wa.wa.wa.wa.wa.wa.	2.6	7
83	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/table/dtd" H2O2+ ions in ionized O2/CH4 mixtures: intermediacy of CH3OOH+ and CH2O+. Chemical Physics Letters, 2007, 435, 219-223.	2.6	6
84	Gas-Phase Ion Chemistry of BF3/NH3Mixtures. Journal of Physical Chemistry A, 2006, 110, 12427-12433.	2.5	5