
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1692471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zoonotic Potential and Molecular Epidemiology of <i>Giardia</i> Species and Giardiasis. Clinical Microbiology Reviews, 2011, 24, 110-140.	5.7	914
2	Molecular epidemiology of cryptosporidiosis: An update. Experimental Parasitology, 2010, 124, 80-89.	0.5	878
3	Cryptosporidium Taxonomy: Recent Advances and Implications for Public Health. Clinical Microbiology Reviews, 2004, 17, 72-97.	5.7	742
4	A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infectious Diseases, The, 2015, 15, 85-94.	4.6	725
5	Phylogenetic Analysis of <i>Cryptosporidium</i> Parasites Based on the Small-Subunit rRNA Gene Locus. Applied and Environmental Microbiology, 1999, 65, 1578-1583.	1.4	673
6	Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 2020, 583, 286-289.	13.7	599
7	Triosephosphate Isomerase Gene Characterization and Potential Zoonotic Transmission of <i>Giardia duodenalis </i> . Emerging Infectious Diseases, 2003, 9, 1444-1452.	2.0	548
8	Genetic Diversity within <i>Cryptosporidium parvum</i> and Related <i>Cryptosporidium</i> Species. Applied and Environmental Microbiology, 1999, 65, 3386-3391.	1.4	529
9	<i>Cryptosporidium</i> species in humans and animals: current understanding and research needs. Parasitology, 2014, 141, 1667-1685.	0.7	505
10	Identification of 5 Types ofCryptosporidiumParasites in Children in Lima, Peru. Journal of Infectious Diseases, 2001, 183, 492-497.	1.9	464
11	Subgenotype Analysis of Cryptosporidium Isolates from Humans, Cattle, and Zoo Ruminants in Portugal. Journal of Clinical Microbiology, 2003, 41, 2744-2747.	1.8	461
12	Unique Endemicity of Cryptosporidiosis in Children in Kuwait. Journal of Clinical Microbiology, 2005, 43, 2805-2809.	1.8	411
13	Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 2008, 38, 1239-1255.	1.3	402
14	Genetic Diversity and Population Structure of Cryptosporidium. Trends in Parasitology, 2018, 34, 997-1011.	1.5	365
15	Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Veterinary Parasitology, 2004, 122, 103-117.	0.7	362
16	Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. Journal of Eukaryotic Microbiology, 2002, 49, 433-440.	0.8	355
17	Identification of Novel Cryptosporidium Genotypes from the Czech Republic. Applied and Environmental Microbiology, 2003, 69, 4302-4307.	1.4	311
18	Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 2008, 52, 309-323.	2.7	291

#	Article	IF	CITATIONS
19	Molecular Characterization of Cryptosporidium Oocysts in Samples of Raw Surface Water and Wastewater. Applied and Environmental Microbiology, 2001, 67, 1097-1101.	1.4	279
20	Identification of Species and Sources of Cryptosporidium Oocysts in Storm Waters with a Small-Subunit rRNA-Based Diagnostic and Genotyping Tool. Applied and Environmental Microbiology, 2000, 66, 5492-5498.	1.4	260
21	Host adaptation and host–parasite co-evolution in Cryptosporidium: implications for taxonomy and public health. International Journal for Parasitology, 2002, 32, 1773-1785.	1.3	252
22	Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Veterinary Parasitology, 2007, 144, 1-9.	0.7	249
23	<i>Cryptosporidium</i> Species and Subtypes and Clinical Manifestations in Children, Peru. Emerging Infectious Diseases, 2008, 14, 1567-1574.	2.0	246
24	Cryptosporidiosis: an update in molecular epidemiology. Current Opinion in Infectious Diseases, 2004, 17, 483-490.	1.3	238
25	Distribution of Cryptosporidium Genotypes in Storm Event Water Samples from Three Watersheds in New York. Applied and Environmental Microbiology, 2005, 71, 4446-4454.	1.4	237
26	Molecular Characterization of Microsporidia Indicates that Wild Mammals Harbor Host-Adapted Enterocytozoon spp. as well as Human-Pathogenic Enterocytozoon bieneusi. Applied and Environmental Microbiology, 2003, 69, 4495-4501.	1.4	225
27	Differences in Clinical Manifestations among <i>Cryptosporidium</i> Species and Subtypes in HIVâ€Infected Persons. Journal of Infectious Diseases, 2007, 196, 684-691.	1.9	218
28	Molecular Characterization of <i>Cryptosporidium</i> Isolates Obtained from Human Immunodeficiency Virus-Infected Individuals Living in Switzerland, Kenya, and the United States. Journal of Clinical Microbiology, 2000, 38, 1180-1183.	1.8	210
29	Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy. Journal of Clinical Microbiology, 2013, 51, 557-563.	1.8	209
30	Development of Procedures for Direct Extraction of Cryptosporidium DNA from Water Concentrates and for Relief of PCR Inhibitors. Applied and Environmental Microbiology, 2005, 71, 1135-1141.	1.4	202
31	Epidemiology of <i>Enterocytozoon bieneusi</i> Infection in Humans. Journal of Parasitology Research, 2012, 2012, 1-19.	0.5	201
32	Three Drinking-Water–Associated Cryptosporidiosis Outbreaks, Northern Ireland. Emerging Infectious Diseases, 2002, 8, 631-633.	2.0	199
33	Phylogenetic Relationships of Cryptosporidium Parasites Based on the 70-Kilodalton Heat Shock Protein (HSP70) Gene. Applied and Environmental Microbiology, 2000, 66, 2385-2391.	1.4	193
34	Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends in Parasitology, 2010, 26, 180-189.	1.5	192
35	MOLECULAR PHYLOGENY AND EVOLUTIONARY RELATIONSHIPS OF CRYPTOSPORIDIUM PARASITES AT THE ACTIN LOCUS. Journal of Parasitology, 2002, 88, 388-394.	0.3	180
36	Molecular Surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by Genotyping and Subtyping Parasites in Wastewater. PLoS Neglected Tropical Diseases, 2012, 6, e1809.	1.3	175

#	Article	IF	CITATIONS
37	Molecular and phylogenetic characterisation of Cryptosporidium from birds. International Journal for Parasitology, 2001, 31, 289-296.	1.3	174
38	CRYPTOSPORIDIUM BOVIS N. SP. (APICOMPLEXA: CRYPTOSPORIDIIDAE) IN CATTLE (BOS TAURUS). Journal of Parasitology, 2005, 91, 624-629.	0.3	174
39	Subtyping <i>Cryptosporidium ubiquitum,</i> a Zoonotic Pathogen Emerging in Humans. Emerging Infectious Diseases, 2014, 20, 217-224.	2.0	172
40	CRYPTOSPORIDIUM CANIS N. SP. FROM DOMESTIC DOGS. Journal of Parasitology, 2001, 87, 1415-1422.	0.3	171
41	Concurrent Infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium difficile in Children during a Cryptosporidiosis Outbreak in a Pediatric Hospital in China. PLoS Neglected Tropical Diseases, 2013, 7, e2437.	1.3	167
42	Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitology Research, 2006, 99, 287-292.	0.6	165
43	Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food and Waterborne Parasitology, 2017, 8-9, 14-32.	1.1	162
44	Cryptosporidium Systematics and Implications for Public Health. Parasitology Today, 2000, 16, 287-292.	3.1	152
45	Genotype and subtype analyses of Cryptosporidium isolates from dairy calves and humans in Ontario. Parasitology Research, 2006, 99, 346-352.	0.6	152
46	CCR5 Coreceptor Usage of Non-Syncytium-Inducing Primary HIV-1 Is Independent of Phylogenetically Distinct Global HIV-1 Isolates: Delineation of Consensus Motif in the V3 Domain That Predicts CCR-5 Usage. Virology, 1998, 240, 83-92.	1.1	151
47	Variation in Cryptosporidium: towards a taxonomic revision of the genus. International Journal for Parasitology, 1999, 29, 1733-1751.	1.3	151
48	Cryptosporidium Species and Genotypes in HIV-Positive Patients in Lima, Peru. Journal of Eukaryotic Microbiology, 2003, 50, 531-533.	0.8	146
49	Primary Amebic Meningoencephalitis Deaths Associated With Sinus Irrigation Using Contaminated Tap Water. Clinical Infectious Diseases, 2012, 55, e79-e85.	2.9	144
50	Foodborne cryptosporidiosis. International Journal for Parasitology, 2018, 48, 1-12.	1.3	143
51	<i>>Plasmodium falciparum</i> Antigenâ€Induced Human Immunodeficiency Virus Type 1 Replication Is Mediated through Induction of Tumor Necrosis Factorâ€I±. Journal of Infectious Diseases, 1998, 177, 437-445.	1.9	141
52	<i>Cryptosporidium</i> Genotypes in Wildlife from a New York Watershed. Applied and Environmental Microbiology, 2007, 73, 6475-6483.	1.4	141
53	A Comparison of Cryptosporidium Subgenotypes from Several Geographic Regions. Journal of Eukaryotic Microbiology, 2001, 48, 28s-31s.	0.8	138
54	Infection patterns of Cryptosporidium and Giardia in calves. Veterinary Parasitology, 1994, 55, 257-262.	0.7	136

#	Article	IF	CITATIONS
55	An Outbreak of Cryptosporidiosis Linked to a Foodhandler. Journal of Infectious Diseases, 2000, 181, 695-700.	1.9	136
56	Genotypes and subtypes of Cryptosporidium spp. in neonatal calves in Northern Ireland. Parasitology Research, 2007, 100, 619-624.	0.6	135
57	Distribution and Clinical Manifestations of Cryptosporidium Species and Subtypes in HIV/AIDS Patients in Ethiopia. PLoS Neglected Tropical Diseases, 2014, 8, e2831.	1.3	133
58	CRYPTOSPORIDIUM SUIS N. SP. (APICOMPLEXA: CRYPTOSPORIDIIDAE) IN PIGS (SUS SCROFA). Journal of Parasitology, 2004, 90, 769-773.	0.3	131
59	Giardia: an under-reported foodborne parasite. International Journal for Parasitology, 2019, 49, 1-11.	1.3	131
60	Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. International Journal for Parasitology, 2005, 35, 397-410.	1.3	130
61	Genetic Polymorphism and Zoonotic Potential of <i>Enterocytozoon bieneusi</i> from Nonhuman Primates in China. Applied and Environmental Microbiology, 2014, 80, 1893-1898.	1.4	128
62	Taxonomy and molecular epidemiology of Cryptosporidium and Giardia – a 50Âyear perspective (1971–2021). International Journal for Parasitology, 2021, 51, 1099-1119.	1.3	128
63	Fatal Myositis Due to the MicrosporidianBrachiola algerae,a Mosquito Pathogen. New England Journal of Medicine, 2004, 351, 42-47.	13.9	123
64	<i>Cryptosporidium</i> Rabbit Genotype, a Newly Identified Human Pathogen. Emerging Infectious Diseases, 2009, 15, 829-830.	2.0	122
65	Comparative efficacy of moxidectin and ivermectin against hypobiotic and encysted cyathostomes and other equine parasites. Veterinary Parasitology, 1994, 53, 83-90.	0.7	121
66	Molecular Surveillance of Cryptosporidium spp. in Raw Wastewater in Milwaukee: Implications for Understanding Outbreak Occurrence and Transmission Dynamics. Journal of Clinical Microbiology, 2003, 41, 5254-5257.	1.8	121
67	Minimal zoonotic risk of cryptosporidiosis from pet dogs and cats. Trends in Parasitology, 2010, 26, 174-179.	1.5	121
68	Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, Indiaâ~†. Infection, Genetics and Evolution, 2007, 7, 197-205.	1.0	118
69	Genetic Diversity of Cryptosporidium spp. in Captive Reptiles. Applied and Environmental Microbiology, 2004, 70, 891-899.	1.4	117
70	Adaptation to promiscuous usage of CC and CXC-chemokine coreceptors in vivo correlates with HIV-1 disease progression. Aids, 1998, 12, F137-F143.	1.0	115
71	Cryptosporidiosis Associated with Ozonated Apple Cider. Emerging Infectious Diseases, 2006, 12, 684-686.	2.0	115
72	A Waterborne Outbreak of Gastroenteritis with Multiple Etiologies among Resort Island Visitors and Residents: Ohio, 2004. Clinical Infectious Diseases, 2007, 44, 506-512.	2.9	114

#	Article	IF	CITATIONS
73	Prevalence and genetic characteristics of Cryptosporidium, Enterocytozoon bieneusi and Giardia duodenalis in cats and dogs in Heilongjiang province, China. Veterinary Parasitology, 2015, 208, 125-134.	0.7	114
74	Anthroponotic Enteric Parasites in Monkeys in Public Park, China. Emerging Infectious Diseases, 2012, 18, 1640-1643.	2.0	113
75	Genetic diversity of Cryptosporidium spp. in cattle in Michigan: implications for understanding the transmission dynamics. Parasitology Research, 2003, 90, 175-180.	0.6	111
76	A REDESCRIPTION OF CRYPTOSPORIDIUM GALLI PAVLASEK, 1999 (APICOMPLEXA: CRYPTOSPORIDIIDAE) FROM BIRDS. Journal of Parasitology, 2003, 89, 809-813.	0.3	111
77	Sequence Differences in the Diagnostic Target Region of the Oocyst Wall Protein Gene of Cryptosporidium Parasites. Applied and Environmental Microbiology, 2000, 66, 5499-5502.	1.4	110
78	<i>Cryptosporidium</i> spp. in Wild, Laboratory, and Pet Rodents in China: Prevalence and Molecular Characterization. Applied and Environmental Microbiology, 2009, 75, 7692-7699.	1.4	110
79	Occurrence and molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi in dairy cattle, beef cattle and water buffaloes in China. Veterinary Parasitology, 2015, 207, 220-227.	0.7	108
80	Molecular Epidemiology of Cryptosporidiosis in Children in Malawi. Journal of Eukaryotic Microbiology, 2003, 50, 557-559.	0.8	106
81	Transmission of Enterocytozoon bieneusi between a Child and Guinea Pigs. Journal of Clinical Microbiology, 2007, 45, 2708-2710.	1.8	105
82	Host Specificity and Source of Enterocytozoon bieneusi Genotypes in a Drinking Source Watershed. Applied and Environmental Microbiology, 2014, 80, 218-225.	1.4	104
83	Molecular characterization of Enterocytozoon bieneusi in cattle indicates that only some isolates have zoonotic potential. Parasitology Research, 2004, 92, 328-334.	0.6	103
84	Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitology Research, 2007, 100, 701-706.	0.6	103
85	Development of a Multilocus Sequence Typing Tool for High-Resolution Genotyping of Enterocytozoon bieneusi. Applied and Environmental Microbiology, 2011, 77, 4822-4828.	1.4	103
86	Genetic Diversity in Enterocytozoon bieneusi Isolates from Dogs and Cats in China: Host Specificity and Public Health Implications. Journal of Clinical Microbiology, 2014, 52, 3297-3302.	1.8	103
87	Molecular Epidemiology of Cryptosporidiosis in China. Frontiers in Microbiology, 2017, 8, 1701.	1.5	103
88	Host-Adapted Cryptosporidium spp. in Canada Geese (Branta canadensis). Applied and Environmental Microbiology, 2004, 70, 4211-4215.	1.4	102
89	<i>Cryptosporidium</i> Genotype and Subtype Distribution in Raw Wastewater in Shanghai, China: Evidence for Possible Unique <i>Cryptosporidium hominis</i> Transmission. Journal of Clinical Microbiology, 2009, 47, 153-157.	1.8	102
90	Characteristics of Cryptosporidium Transmission in Preweaned Dairy Cattle in Henan, China. Journal of Clinical Microbiology, 2011, 49, 1077-1082.	1.8	102

#	Article	IF	CITATIONS
91	Giardia infection in farm animals. Parasitology Today, 1994, 10, 436-438.	3.1	100
92	Molecular Epidemiology of Giardia, Blastocystis and Cryptosporidium among Indigenous Children from the Colombian Amazon Basin. Frontiers in Microbiology, 2017, 8, 248.	1.5	99
93	Identification of theCryptosporidiumPig Genotype in a Human Patient. Journal of Infectious Diseases, 2002, 185, 1846-1848.	1.9	98
94	The Epidemiology of Intestinal Microsporidiosis in Patients with HIV/AIDS in Lima, Peru. Journal of Infectious Diseases, 2005, 191, 1658-1664.	1.9	96
95	A Molecular Biologic Study of Enterocytozoon bieneusi in HIV-Infected Patients in Lima, Peru. Journal of Eukaryotic Microbiology, 2003, 50, 591-596.	0.8	91
96	Cyclospora papionis, Cryptosporidium hominis, and Human-Pathogenic Enterocytozoon bieneusi in Captive Baboons in Kenya. Journal of Clinical Microbiology, 2011, 49, 4326-4329.	1.8	90
97	Distribution of Giardia duodenalis Genotypes and Subgenotypes in Raw Urban Wastewater in Milwaukee, Wisconsin. Applied and Environmental Microbiology, 2004, 70, 3776-3780.	1.4	89
98	Microsporidia as emerging pathogens and the implication for public health: A 10-year study on HIV-positive and -negative patients. International Journal for Parasitology, 2012, 42, 197-205.	1.3	89
99	Molecular characterization and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Veterinary Parasitology, 2010, 171, 41-47.	0.7	88
100	Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Experimental Parasitology, 2012, 130, 274-281.	0.5	88
101	Occurrence, Source, and Human Infection Potential of <i>Cryptosporidium</i> and <i>Enterocytozoon bieneusi</i> in Drinking Source Water in Shanghai, China, during a Pig Carcass Disposal Incident. Environmental Science & Technology, 2014, 48, 14219-14227.	4.6	88
102	Cryptosporidiosis in developing countries. Journal of Infection in Developing Countries, 2007, 1, 242-256.	0.5	87
103	Real-time PCR for the detection of Cryptosporidium parvum. Journal of Microbiological Methods, 2001, 47, 323-337.	0.7	86
104	Genotypes of Cryptosporidium Species Infecting Fur-Bearing Mammals Differ from Those of Species Infecting Humans. Applied and Environmental Microbiology, 2004, 70, 7574-7577.	1.4	86
105	<i>Cryptosporidium parvum</i> in Oysters from Commercial Harvesting Sites in the Chesapeake Bay. Emerging Infectious Diseases, 1999, 5, 706-710.	2.0	85
106	Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expression and Purification, 2004, 34, 87-94.	0.6	85
107	Detection of theCryptosporidium parvum"Human―Genotype in a Dugong (Dugong dugon). Journal of Parasitology, 2000, 86, 1352-1354.	0.3	84
108	Occurrence of human-pathogenic Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium genotypes in laboratory macaques in Guangxi, China. Parasitology International, 2014, 63, 132-137.	0.6	84

#	Article	IF	CITATIONS
109	The First Association of a Primary Amebic Meningoencephalitis Death With Culturable Naegleria fowleri in Tap Water From a US Treated Public Drinking Water System. Clinical Infectious Diseases, 2015, 60, e36-e42.	2.9	84
110	Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasites and Vectors, 2016, 9, 121.	1.0	84
111	An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals, 2021, 11, 3307.	1.0	84
112	Mixed <i>Cryptosporidium</i> Infections and HIV. Emerging Infectious Diseases, 2006, 12, 1025-1028.	2.0	82
113	Cryptosporidium spp. in pet birds: Genetic diversity and potential public health significance. Experimental Parasitology, 2011, 128, 336-340.	0.5	82
114	Detection and Differentiation of Cryptosporidium Parasites That Are Pathogenic for Humans by Real-Time PCR. Journal of Clinical Microbiology, 2002, 40, 2335-2338.	1.8	80
115	Epidemiology of equine <i>Cryptosporidium</i> and <i>Giardia</i> infections. Equine Veterinary Journal, 1994, 26, 14-17.	0.9	77
116	<i>Cryptosporidium muris</i> , a Rodent Pathogen, Recovered from a Human in Perú. Emerging Infectious Diseases, 2003, 9, 1174-1176.	2.0	77
117	Concurrent infections of Giardia and Cryptosporidium on two Ohio farms with calf diarrhea. Veterinary Parasitology, 1993, 51, 41-48.	0.7	76
118	Possible Transmission of Cryptosporidium canis among Children and a Dog in a Household. Journal of Clinical Microbiology, 2007, 45, 2014-2016.	1.8	76
119	Epidemiology and Molecular Characterization of Cryptosporidium spp. in Humans, Wild Primates, and Domesticated Animals in the Greater Gombe Ecosystem, Tanzania. PLoS Neglected Tropical Diseases, 2015, 9, e0003529.	1.3	76
120	Widespread occurrence of Cryptosporidium infections in patients with HIV/AIDS: Epidemiology, clinical feature, diagnosis, and therapy. Acta Tropica, 2018, 187, 257-263.	0.9	76
121	Contamination of Atlantic coast commercial shellfish with Cryptosporidium. Parasitology Research, 2003, 89, 141-145.	0.6	74
122	Genotypes of Enterocytozoon bieneusi in Mammals in Portugal. Journal of Eukaryotic Microbiology, 2006, 53, S61-S64.	0.8	74
123	Fatal Naegleria fowleri Infection Acquired in Minnesota: Possible Expanded Range of a Deadly Thermophilic Organism. Clinical Infectious Diseases, 2012, 54, 805-809.	2.9	74
124	Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics, 2015, 16, 320.	1.2	74
125	A Population Genetic Study of the Cryptosporidium parvum Human Genotype Parasites. Journal of Eukaryotic Microbiology, 2001, 48, 24s-27s.	0.8	72
126	Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. International Journal for Parasitology, 2013, 43, 1141-1147.	1.3	72

#	Article	IF	CITATIONS
127	Occurrence, Source, and Human Infection Potential of Cryptosporidium and Giardia spp. in Source and Tap Water in Shanghai, China. Applied and Environmental Microbiology, 2011, 77, 3609-3616.	1.4	71
128	Survey and genetic characterization of wastewater in Tunisia for Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp Journal of Water and Health, 2012, 10, 431-444.	1.1	71
129	Zoonotic giardiasis: an update. Parasitology Research, 2021, 120, 4199-4218.	0.6	71
130	Genetic characterizations of Cryptosporidium spp. and Giardia duodenalis in humans in Henan, China. Experimental Parasitology, 2011, 127, 42-45.	0.5	70
131	Extended Outbreak of Cryptosporidiosis in a Pediatric Hospital, China. Emerging Infectious Diseases, 2012, 18, 312-314.	2.0	70
132	High diversity of human-pathogenic Enterocytozoon bieneusi genotypes in swine in northeast China. Parasitology Research, 2014, 113, 1147-1153.	0.6	69
133	Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse. Veterinary Parasitology, 2015, 208, 135-142.	0.7	69
134	Periparturient Rise in the Excretion of Giardia sp. Cysts and Cryptosporidium parvum Oocysts as a Source of Infection for Lambs. Journal of Parasitology, 1994, 80, 55.	0.3	68
135	Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals. PLoS ONE, 2016, 11, e0147090.	1.1	68
136	Temporal variability of Cryptosporidium in the Chesapeake Bay. Parasitology Research, 2002, 88, 998-1003.	0.6	67
137	Cryptosporidium. Letters in Applied Microbiology, 2006, 43, 7-16.	1.0	66
138	<i>Cryptosporidium</i> Source Tracking in the Potomac River Watershed. Applied and Environmental Microbiology, 2008, 74, 6495-6504.	1.4	66
139	Pathogenesis of Human and BovineCryptosporidium parvumin Gnotobiotic Pigs. Journal of Infectious Diseases, 2002, 186, 715-718.	1.9	64
140	Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Experimental Parasitology, 2015, 150, 31-35.	0.5	64
141	Prevalence of Cryptosporidium and Giardia infections on two Ohio pig farms with different management systems. Veterinary Parasitology, 1994, 52, 331-336.	0.7	63
142	Molecular and phylogenetic analysis of Cryptosporidium muris from various hosts. Parasitology, 2000, 120, 457-464.	0.7	63
143	Geographic Linkage and Variation in <i>Cryptosporidium hominis</i> . Emerging Infectious Diseases, 2008, 14, 496-498.	2.0	63
144	Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17, 1006.	1.2	63

#	Article	IF	CITATIONS
145	Disseminated microsporidiosis in a renal transplant recipient. Transplant Infectious Disease, 2002, 4, 102-107.	0.7	62
146	Identification of Potentially Human-Pathogenic Enterocytozoon bieneusi Genotypes in Various Birds. Applied and Environmental Microbiology, 2006, 72, 7380-7382.	1.4	62
147	Molecular Epidemiologic Characterization of Enterocytozoon bieneusi in HIV-Infected Persons in Benin City, Nigeria. American Journal of Tropical Medicine and Hygiene, 2012, 86, 441-445.	0.6	62
148	Genetic Recombination and <i>Cryptosporidium hominis</i> Virulent Subtype IbA10G2. Emerging Infectious Diseases, 2013, 19, 1573-82.	2.0	62
149	High intragenotypic diversity of Giardia duodenalis in dairy cattle on three farms. Parasitology Research, 2008, 103, 87-92.	0.6	61
150	Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile River delta provinces, Egypt. Experimental Parasitology, 2013, 135, 518-523.	0.5	61
151	Genotyping Encephalitozoon cuniculi by Multilocus Analyses of Genes with Repetitive Sequences. Journal of Clinical Microbiology, 2001, 39, 2248-2253.	1.8	60
152	The population structure of the Cryptosporidium parvum population in Scotland: A complex picture. Infection, Genetics and Evolution, 2008, 8, 121-129.	1.0	60
153	Cervine genotype is the major Cryptosporidium genotype in sheep in China. Parasitology Research, 2010, 106, 341-347.	0.6	60
154	Outbreak of giardiasis associated with a community drinking-water source. Epidemiology and Infection, 2010, 138, 491-500.	1.0	60
155	Subtype analysis of Cryptosporidium parvum and Cryptosporidium hominis isolates from humans and cattle in Iran. Veterinary Parasitology, 2011, 179, 250-252.	0.7	60
156	Development of a Multilocus Sequence Tool for Typing <i>Cryptosporidium muris</i> and <i>Cryptosporidium andersoni</i> . Journal of Clinical Microbiology, 2011, 49, 34-41.	1.8	60
157	Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasites and Vectors, 2019, 12, 453.	1.0	59
158	Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Scientific Reports, 2014, 4, 4208.	1.6	58
159	Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. International Journal for Parasitology, 2017, 47, 281-290.	1.3	58
160	Subtypes of Cryptosporidium spp. in mice and other small mammals. Experimental Parasitology, 2011, 127, 238-242.	0.5	57
161	Molecular characterization of Cryptosporidium spp. in native breeds of cattle in Kaduna State, Nigeria. Veterinary Parasitology, 2011, 178, 241-245.	0.7	57
162	Identity and public health potential of Cryptosporidium spp. in water buffalo calves in Egypt. Veterinary Parasitology, 2013, 191, 123-127.	0.7	57

#	Article	IF	CITATIONS
163	Subtyping Novel Zoonotic Pathogen Cryptosporidium Chipmunk Genotype I. Journal of Clinical Microbiology, 2015, 53, 1648-1654.	1.8	57
164	Dominance of Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotype BEB6 in sheep in Inner Mongolia, China. Veterinary Parasitology, 2015, 210, 235-239.	0.7	57
165	Evaluation of <i>Cryptosporidium parvum</i> Genotyping Techniques. Applied and Environmental Microbiology, 1999, 65, 4431-4435.	1.4	57
166	Unique <i>Cryptosporidium</i> Population in HIV-Infected Persons, Jamaica. Emerging Infectious Diseases, 2008, 14, 841-843.	2.0	56
167	Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. Journal of Water and Health, 2016, 14, 411-423.	1.1	56
168	Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clinical Microbiology Reviews, 2021, 34, .	5.7	56
169	Genetic Variations in the Internal Transcribed Spacer and Mitochondrial Small Subunit rRNA Gene of Naegleria spp Journal of Eukaryotic Microbiology, 2003, 50, 522-526.	0.8	55
170	Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasites and Vectors, 2019, 12, 41.	1.0	55
171	<i>Cryptosporidium fayeri</i> n. sp. (Apicomplexa: Cryptosporidiidae) from the Red Kangaroo (<i>Macropus rufus</i>). Journal of Eukaryotic Microbiology, 2008, 55, 22-26.	0.8	54
172	Molecular evidence for zoonotic transmission of Giardia duodenalis among dairy farm workers in West Bengal, India. Veterinary Parasitology, 2011, 178, 342-345.	0.7	54
173	Molecular characterizations of Cryptosporidium, Giardia, and Enterocytozoon in humans in Kaduna State, Nigeria. Experimental Parasitology, 2012, 131, 452-456.	0.5	54
174	Population genetic analysis of Enterocytozoon bieneusi in humans. International Journal for Parasitology, 2012, 42, 287-293.	1.3	54
175	Development of a Multilocus Sequence Typing Tool for Cryptosporidium hominis. Journal of Eukaryotic Microbiology, 2006, 53, S43-S48.	0.8	53
176	Longitudinal Analysis of Cryptosporidium Species-Specific Immunoglobulin G Antibody Responses in Peruvian Children. Vaccine Journal, 2006, 13, 123-131.	3.2	53
177	Molecular Characterization of Cryptosporidium spp. from Children in Kolkata, India. Journal of Clinical Microbiology, 2006, 44, 4246-4249.	1.8	53
178	Cryptosporidium andersoni is the predominant species in post-weaned and adult dairy cattle in China. Parasitology International, 2011, 60, 1-4.	0.6	53
179	Common occurrence of a unique Cryptosporidium ryanae variant in zebu cattle and water buffaloes in the buffer zone of the Chitwan National Park, Nepal. Veterinary Parasitology, 2012, 185, 309-314.	0.7	53
180	Common occurrence of zoonotic pathogen Cryptosporidium meleagridis in broiler chickens and turkeys in Algeria. Veterinary Parasitology, 2013, 196, 334-340.	0.7	53

#	Article	IF	CITATIONS
181	Disseminated Microsporidiosis Caused by Encephalitozoon cuniculi III (Dog Type) in an Italian AIDS Patient: a Retrospective Study. Modern Pathology, 2002, 15, 577-583.	2.9	52
182	Fatal <i>Naegleria fowleri</i> Meningoencephalitis, Italy. Emerging Infectious Diseases, 2004, 10, 1835-1837.	2.0	52
183	Large-scale survey of <i>Cryptosporidium</i> spp. in chickens and Pekin ducks (<i>Anas) Tj ETQq1 1 0.784314 rgB 39, 447-451.</i>	T /Overloc 0.8	k 10 Tf 50 52
184	Distribution of Cryptosporidium species in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2016, 215, 58-62.	0.7	52
185	Cryptosporidium spp. in Domestic Dogs: the "Dog―Genotype. Applied and Environmental Microbiology, 2000, 66, 2220-2223.	1.4	51
186	Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. International Journal for Parasitology, 2014, 44, 1039-1047.	1.3	51
187	Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Veterinary Parasitology, 2017, 241, 14-19.	0.7	51
188	Outbreaks Associated with Treated Recreational Water — United States, 2000–2014. Morbidity and Mortality Weekly Report, 2018, 67, 547-551.	9.0	51
189	An Evaluation of Molecular Diagnostic Tools for the Detection and Differentiation of Human-Pathogenic Cryptosporidium spp Journal of Eukaryotic Microbiology, 2003, 50, 542-547.	0.8	50
190	Detection of Cryptosporidium Oocysts in Water: Effect of the Number of Samples and Analytic Replicates on Test Results. Applied and Environmental Microbiology, 2006, 72, 5942-5947.	1.4	50
191	Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
192	Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Research, 2012, 46, 5135-5150.	5.3	49
193	Multilocus sequence typing of Enterocytozoon bieneusi: Lack of geographic segregation and existence of genetically isolated sub-populations. Infection, Genetics and Evolution, 2013, 14, 111-119.	1.0	49
194	Efficacy of albendazole and fenbendazole against Giardia infection in cattle. Veterinary Parasitology, 1996, 61, 165-170.	0.7	48
195	<i>Cryptosporidium meleagridisin</i> an Indian ringâ€necked parrot (<i>Psittacu la krameri</i>). Australian Veterinary Journal, 2000, 78, 182-183.	0.5	48
196	Prevalence and Identity of Cryptosporidium spp. in Pig Slurry. Applied and Environmental Microbiology, 2006, 72, 4461-4463.	1.4	48
197	Prevalence and distribution of Cryptosporidium spp. in dairy cattle in Heilongjiang Province, China. Parasitology Research, 2009, 105, 797-802.	0.6	48
198	Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and Other Intestinal Parasites in Young Children in Lobata Province, Democratic Republic of SA£o TomA© and Principe. PLoS ONE, 2014, 9, e97708.	1.1	48

#	Article	IF	CITATIONS
199	<i>Cryptosporidium felis</i> and <i>C. meleagridis</i> in Persons with HIV, Portugal. Emerging Infectious Diseases, 2004, 10, 2256-2257.	2.0	47
200	Genotypes of Enterocytozoon bieneusi in Livestock in China: High Prevalence and Zoonotic Potential. PLoS ONE, 2014, 9, e97623.	1.1	47
201	Multilocus Sequence Typing of an Emerging Cryptosporidium hominis Subtype in the United States. Journal of Clinical Microbiology, 2014, 52, 524-530.	1.8	47
202	Potential impacts of host specificity on zoonotic or interspecies transmission of Enterocytozoon bieneusi. Infection, Genetics and Evolution, 2019, 75, 104033.	1.0	47
203	Partial Protection against <i>Plasmodium vivax</i> Blood-Stage Infection in <i>Saimiri</i> Monkeys by Immunization with a Recombinant C-Terminal Fragment of Merozoite Surface Protein 1 in Block Copolymer Adjuvant. Infection and Immunity, 1999, 67, 342-349.	1.0	47
204	A Multilocus Genotypic Analysis of Cryptosporidium meleagridis. Journal of Eukaryotic Microbiology, 2001, 48, 19s-22s.	0.8	46
205	Subtype Analysis of <i>Cryptosporidium</i> Specimens from Sporadic Cases in Colorado, Idaho, New Mexico, and Iowa in 2007: Widespread Occurrence of One <i>Cryptosporidium hominis</i> Subtype and Case History of an Infection with the <i>Cryptosporidium</i> Horse Genotype. Journal of Clinical Microbiology, 2009, 47, 3017-3020.	1.8	46
206	<i><scp>C</scp>ryptosporidium hominis</i> Subtypes and <i><scp>E</scp>nterocytozoon bieneusi</i> Genotypes in <scp>HIV</scp> â€Infected Persons in <scp>I</scp> badan, <scp>N</scp> igeria. Zoonoses and Public Health, 2014, 61, 297-303.	0.9	46
207	Ecological and public health significance of Enterocytozoon bieneusi. One Health, 2021, 12, 100209.	1.5	46
208	Tracking Cryptosporidium parvum by Sequence Analysis of Small Double-Stranded RNA. Emerging Infectious Diseases, 2001, 7, 141-145.	2.0	46
209	Prevalence and Molecular Characterization of <i>Cyclospora cayetanensis</i> , Henan, China. Emerging Infectious Diseases, 2011, 17, 1887-1890.	2.0	45
210	Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing. Journal of Clinical Microbiology, 2015, 53, 641-647.	1.8	45
211	Development and Application of a gp60-Based Typing Assay for Cryptosporidium viatorum. Journal of Clinical Microbiology, 2015, 53, 1891-1897.	1.8	45
212	Genotyping Encephalitozoon hellem Isolates by Analysis of the Polar Tube Protein Gene. Journal of Clinical Microbiology, 2001, 39, 2191-2196.	1.8	44
213	Cryptosporidiosis associated with animal contacts. Wiener Klinische Wochenschrift, 2003, 115, 125-127.	1.0	44
214	Prevalence and molecular identification of Cryptosporidium spp. in pigs in Henan, China. Parasitology Research, 2010, 107, 1489-1494.	0.6	44
215	Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. International Journal for Parasitology, 2014, 44, 515-521.	1.3	44
216	Molecular Characterization of Echinococcus granulosus Sensu Lato from Farm Animals in Egypt. PLoS ONE, 2015, 10, e0118509.	1.1	44

#	Article	IF	CITATIONS
217	Occurrence ofCryptosporidiumandGiardiagenotypes and subtypes in raw and treated water in Portugal. Letters in Applied Microbiology, 2009, 48, 732-7.	1.0	43
218	The prevalence of Cryptosporidium, and identification of the Cryptosporidium horse genotype in foals in New York State. Veterinary Parasitology, 2010, 174, 139-144.	0.7	43
219	Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host. Nature Communications, 2016, 7, 12845.	5.8	43
220	Parasitic contamination in wastewater and sludge samples in Tunisia using three different detection techniques. Parasitology Research, 2010, 107, 109-116.	0.6	42
221	Multilocus sequence typing of Enterocytozoon bieneusi in nonhuman primates in China. Veterinary Parasitology, 2014, 200, 13-23.	0.7	42
222	Identity of Fasciola spp. in sheep in Egypt. Parasites and Vectors, 2016, 9, 623.	1.0	42
223	Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics, 2016, 17, 316.	1.2	42
224	Cryptosporidiosis in developing countries. Journal of Infection in Developing Countries, 2007, 1, 242-56.	0.5	42
225	Molecular and Biological Characterization of a Cryptosporidium molnari-Like Isolate from a Guppy (Poecilia reticulata). Applied and Environmental Microbiology, 2004, 70, 3761-3765.	1.4	41
226	An outbreak ofCryptosporidium hominisinfection at an Illinois recreational waterpark. Epidemiology and Infection, 2006, 134, 147-156.	1.0	41
227	Multilocus Sequence Typing and Population Genetic Analysis of Enterocytozoon bieneusi: Host Specificity and Its Impacts on Public Health. Frontiers in Genetics, 2019, 10, 307.	1.1	41
228	Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasites and Vectors, 2015, 8, 358.	1.0	40
229	Molecular characterization of Cryptosporidium spp. and Giardia duodenalis in children in Egypt. Parasites and Vectors, 2018, 11, 403.	1.0	40
230	Update on <i>Cryptosporidium</i> spp.: highlights from the Seventh International <i>Giardia</i> and <i>Cryptosporidium</i> Conference. Parasite, 2020, 27, 14.	0.8	40
231	Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: A matched case-control study. PLoS Neglected Tropical Diseases, 2017, 11, e0005795.	1.3	40
232	Diagnosis of Cryptosporidium on a sheep farm with neonatal diarrhea by immunofluorescence assays. Veterinary Parasitology, 1993, 47, 17-23.	0.7	39
233	Periparturient transmission of Cryptosporidium xiaoi from ewes to lambs. Veterinary Parasitology, 2013, 197, 627-633.	0.7	39
234	Outbreak of cryptosporidiosis due to Cryptosporidium parvum subtype IIdA19G1 in neonatal calves on a dairy farm in China. International Journal for Parasitology, 2019, 49, 569-577.	1.3	39

#	Article	IF	CITATIONS
235	Formation of hydroxyeicosatetraenoic acids from hemozoin-catalyzed oxidation of arachidonic acid. Molecular and Biochemical Parasitology, 1996, 83, 183-188.	0.5	38
236	Occurrence and molecular characterization of Cryptosporidium spp. in mammals and reptiles at the Lisbon Zoo. Parasitology Research, 2005, 97, 108-112.	0.6	38
237	Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Veterinary Parasitology, 2008, 153, 363-367.	0.7	38
238	Complex epidemiology and zoonotic potential for Cryptosporidium suis in rural Madagascar. Veterinary Parasitology, 2015, 207, 140-143.	0.7	38
239	Multilocus Sequence Typing Tool for <i>Cyclospora cayetanensis</i> . Emerging Infectious Diseases, 2016, 22, 1464-1467.	2.0	38
240	<i>Cyclospora cayetanensis</i> infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology, 2020, 147, 160-170.	0.7	38
241	Molecular Characterization of Cryptosporidium spp. in Children from Mexico. PLoS ONE, 2014, 9, e96128.	1.1	38
242	Induction of protective antibodies in Saimiri monkeys by immunization with a multiple antigen construct (MAC) containing the Plasmodium vivax circumsporozoite protein repeat region and a universal T helper epitope of tetanus toxin. Vaccine, 1997, 15, 377-386.	1.7	37
243	Species and Strain-specific Typing of Cryptosporidium Parasites in Clinical and Environmental Samples. Memorias Do Instituto Oswaldo Cruz, 1998, 93, 687-692.	0.8	37
244	Cryptosporidium spp. in quails (Coturnix coturnix japonica) in Henan, China: Molecular characterization and public health significance. Veterinary Parasitology, 2012, 187, 534-537.	0.7	37
245	Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: Geographical segregation and host-adaptation of assemblage B isolates. Infection, Genetics and Evolution, 2015, 30, 82-88.	1.0	37
246	Common occurrence of Cryptosporidium hominis in horses and donkeys. Infection, Genetics and Evolution, 2016, 43, 261-266.	1.0	37
247	Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitology Research, 2018, 117, 721-727.	0.6	37
248	Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics, 2019, 20, 406.	1.2	37
249	Phylogenetic Analysis of Cryptosporidium Isolates from Captive Reptiles Using 18S rDNA Sequence Data and Random Amplified Polymorphic DNA Analysis. Journal of Parasitology, 1999, 85, 525.	0.3	36
250	Enterocytozoon bieneusi at the wildlife/livestock interface of the Kruger National Park, South Africa. Veterinary Parasitology, 2012, 190, 587-590.	0.7	36
251	Molecular characterization of Cryptosporidium spp. in grazing beef cattle in Japan. Veterinary Parasitology, 2012, 187, 123-128.	0.7	36
252	Review of equine <i>Cryptosporidium</i> infection. Equine Veterinary Journal, 1994, 26, 9-13.	0.9	35

#	Article	IF	CITATIONS
253	In Vitro Culture, Ultrastructure, Antigenic, and Molecular Characterization of Encephalitozoon cuniculi Isolated from Urine and Sputum Samples from a Spanish Patient with AIDS. Journal of Clinical Microbiology, 2001, 39, 1105-1108.	1.8	35
254	Molecular characterization of Cryptosporidium spp. in native calves in Nigeria. Parasitology Research, 2010, 107, 1019-1021.	0.6	35
255	Multilocus Sequence Subtyping and Genetic Structure of Cryptosporidium muris and Cryptosporidium and enversion and	1.1	35
256	Plasmodium falciparum:Involvement of Additional Receptors in the Cytoadherence of Infected Erythrocytes to Microvascular Endothelial Cells. Experimental Parasitology, 1996, 84, 42-55.	0.5	34
257	Molecular identification and distribution of Cryptosporidium and Giardia duodenalis in raw urban wastewater in Harbin, China. Parasitology Research, 2011, 109, 913-918.	0.6	34
258	Genotypic Distribution and Phylogenetic Characterization of Enterocytozoon bieneusi in Diarrheic Chickens and Pigs in Multiple Cities, China: Potential Zoonotic Transmission. PLoS ONE, 2014, 9, e108279.	1.1	34
259	Cryptosporidium species and Cryptosporidium parvum subtypes in dairy calves and goat kids reared under traditional farming systems in Turkey. Experimental Parasitology, 2016, 170, 16-20.	0.5	34
260	Detection and Differentiation of <1>Cryptosporidium Oocysts in Water by PCR-RFLP. , 2004, 268, 163-176.		33
261	Molecular characterization of Cryptosporidium in children in Oyo State, Nigeria: implications for infection sources. Parasitology Research, 2012, 110, 479-481.	0.6	33
262	Occurrence and molecular characterization of Cryptosporidium spp. in yaks (Bos grunniens) in China. Veterinary Parasitology, 2014, 202, 113-118.	0.7	33
263	Annotated draft genome sequences of three species of <i>Cryptosporidium</i> : <i>Cryptosporidium meleagridis</i> isolate UKMEL1, <i>C. baileyi</i> isolate TAMU-09Q1 and <i>C. hominis</i> isolates TU502_2012 and UKH1. Pathogens and Disease, 2016, 74, ftw080.	0.8	33
264	Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis. Parasite, 2020, 27, 27.	0.8	33
265	Cryptosporidium species and subtypes in diarrheal children and HIV-infected persons in Ebonyi and Nsukka, Nigeria. Journal of Infection in Developing Countries, 2017, 11, 173-179.	0.5	33
266	Molecular Characterization of aCryptosporidiumIsolate From a Black Bear. Journal of Parasitology, 2000, 86, 1166-1170.	0.3	32
267	Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon) Tj ETQq1	1 0,78431 0.6	4 rgBT /Over
268	Unusual Enterocytozoon bieneusi Genotypes and Cryptosporidium hominis Subtypes in HIV-Infected Patients on Highly Active Antiretroviral Therapy. American Journal of Tropical Medicine and Hygiene, 2013, 89, 157-161.	0.6	32
269	Identification and morphologic and molecular characterization of Cyclospora macacae n. sp. from rhesus monkeys in China. Parasitology Research, 2015, 114, 1811-1816.	0.6	32
270	Multilocus genotyping of Giardia duodenalis in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2017, 247, 70-76.	0.7	32

#	Article	IF	CITATIONS
271	Age patterns of Cryptosporidium species and Giardia duodenalis in dairy calves in Egypt. Parasitology International, 2018, 67, 736-741.	0.6	32
272	Genetic diversity within dominant Enterocytozoon bieneusi genotypes in pre-weaned calves. Parasites and Vectors, 2018, 11, 170.	1.0	32
273	Cryptosporidium in foodstuffs—an emerging aetiological route of human foodborne illness. Trends in Food Science and Technology, 2002, 13, 168-187.	7.8	31
274	Detection of <i>Toxoplasma gondii</i> Oocysts in Water Sample Concentrates by Real-Time PCR. Applied and Environmental Microbiology, 2009, 75, 3477-3483.	1.4	31
275	Genetic Characterization of <i>Cryptosporidium</i> spp. in Diarrhoeic Children from Four Provinces in South Africa. Zoonoses and Public Health, 2013, 60, 154-159.	0.9	31
276	Molecular identification of Cryptosporidium spp. and Giardia duodenalis in grazing horses from Xinjiang, China. Veterinary Parasitology, 2015, 209, 169-172.	0.7	31
277	High genetic diversity of Giardia duodenalis assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitology Research, 2017, 116, 2101-2110.	0.6	31
278	Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China. Parasitology Research, 2008, 102, 915-920.	0.6	30
279	Multiple risk factors associated with a large statewide increase in cryptosporidiosis. Epidemiology and Infection, 2009, 137, 1781-1788.	1.0	30
280	Zoonotic Cryptosporidium species and subtypes in lambs and goat kids in Algeria. Parasites and Vectors, 2018, 11, 582.	1.0	30
281	Infection patterns, clinical significance, and genetic characteristics of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle in Jiangsu, China. Parasitology Research, 2019, 118, 3053-3060.	0.6	30
282	EPIDEMIOLOGIC AND ENVIRONMENTAL INVESTIGATION OF A RECREATIONAL WATER OUTBREAK CAUSED BY TWO GENOTYPES OF CRYPTOSPORIDIUM PARVUM IN OHIO IN 2000. American Journal of Tropical Medicine and Hygiene, 2004, 71, 582-589.	0.6	30
283	Specific and genotypic identification of <i>Cryptosporidium</i> from a broad range of host species by nonisotopic SSCP analysis of nuclear ribosomal DNA. Electrophoresis, 2007, 28, 2818-2825.	1.3	29
284	Molecular characterization of Cryptosporidium species at the wildlife/livestock interface of the Kruger National Park, South Africa. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 295-302.	0.7	29
285	Communitywide cryptosporidiosis outbreak associated with a surface water-supplied municipal water system – Baker City, Oregon, 2013. Epidemiology and Infection, 2016, 144, 274-284.	1.0	29
286	Epidemiological distribution of genotypes of Giardia duodenalis in humans in Spain. Parasites and Vectors, 2019, 12, 432.	1.0	29
287	Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Research in Veterinary Science, 2020, 133, 251-261.	0.9	29
288	Prevalence of bacterial faecal pathogens in separated and unseparated stored pig slurry. Letters in Applied Microbiology, 2003, 36, 208-212.	1.0	28

#	Article	IF	CITATIONS
289	Prevalence of Cryptosporidium baileyi in ostriches (Struthio camelus) in Zhengzhou, China. Veterinary Parasitology, 2011, 175, 151-154.	0.7	28
290	Wealth and Its Associations with Enteric Parasitic Infections in a Low-Income Community in Peru: Use of Principal Component Analysis. American Journal of Tropical Medicine and Hygiene, 2011, 84, 38-42.	0.6	28
291	<i>Enterocytozoon bieneusi</i> Genotypes in Yaks (<i>Bos grunniens</i>) and Their Public Health Potential. Journal of Eukaryotic Microbiology, 2015, 62, 21-25.	0.8	28
292	Retrospective analysis of Cryptosporidium species in Western Australian human populations (2015–2018), and emergence of the C. hominis IfA12G1R5 subtype. Infection, Genetics and Evolution, 2019, 73, 306-313.	1.0	28
293	Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasites and Vectors, 2019, 12, 571.	1.0	28
294	Small ruminants and zoonotic cryptosporidiosis. Parasitology Research, 2021, 120, 4189-4198.	0.6	28
295	Quantitation of RT-PCR amplified cytokine mRNA by aequorin-based bioluminescence immunoassay. Journal of Immunological Methods, 1996, 199, 139-147.	0.6	27
296	Rapid and Sensitive Detection of Single Cryptosporidium Oocysts from Archived Glass Slides. Journal of Clinical Microbiology, 2006, 44, 3285-3291.	1.8	27
297	Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water. Applied and Environmental Microbiology, 2015, 81, 5845-5854.	1.4	27
298	Cryptosporidiosis surveillance – United States, 2011-2012. MMWR Supplements, 2015, 64, 1-14.	15.3	27
299	Molecular Identification of <i>Enterocytozoon bieneusi</i> Isolates from Nigerian Children. Journal of Parasitology Research, 2011, 2011, 1-2.	0.5	26
300	Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizoological investigation of a laboratory colony of prairie dogs, Cynomys ludovicianus. Veterinary Parasitology, 2015, 210, 91-97.	0.7	26
301	Clonal Evolution of Enterocytozoon bieneusi Populations in Swine and Genetic Differentiation in Subpopulations between Isolates from Swine and Humans. PLoS Neglected Tropical Diseases, 2016, 10, e0004966.	1.3	26
302	Genetic variation of mini- and microsatellites and a clonal structure in Enterocytozoon bieneusi population in foxes and raccoon dogs and population differentiation of the parasite between fur animals and humans. Parasitology Research, 2016, 115, 2899-2904.	0.6	26
303	Epidemiological observations on cryptosporidiosis and molecular characterization of Cryptosporidium spp. in sheep and goats in Kuwait. Parasitology Research, 2018, 117, 1631-1636.	0.6	26
304	Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasites and Vectors, 2019, 12, 350.	1.0	26
305	Using Molecular Characterization to Support Investigations of Aquatic Facility–Associated Outbreaks of Cryptosporidiosis — Alabama, Arizona, and Ohio, 2016. Morbidity and Mortality Weekly Report, 2017, 66, 493-497.	9.0	26
306	Analysis of a Biallelic Polymorphism in the Tumor Necrosis Factor α Promoter and HIV Type 1 Disease Progression. AIDS Research and Human Retroviruses, 1998, 14, 305-309.	0.5	25

#	ARTICLE	IF	CITATIONS
307	Prevalence, Genetic Characteristics, and Zoonotic Potential of <i>Cryptosporidium</i> Species Causing Infections in Farm Rabbits in China. Journal of Clinical Microbiology, 2010, 48, 3263-3266.	1.8	25
308	Preliminary Molecular Characterizations of Sarcoptes scaibiei (Acari: Sarcoptidae) from Farm Animals in Egypt. PLoS ONE, 2014, 9, e94705.	1.1	25
309	Genotypes and subtypes of Cryptosporidium spp. in diarrheic lambs and goat kids in northern Greece. Parasitology International, 2018, 67, 472-475.	0.6	25
310	Clinical, environmental, and behavioral characteristics associated with Cryptosporidium infection among children with moderate-to-severe diarrhea in rural western Kenya, 2008–2012: The Global Enteric Multicenter Study (GEMS). PLoS Neglected Tropical Diseases, 2018, 12, e0006640.	1.3	25
311	Molecular characterization of Giardia duodenalis in Yemen. Experimental Parasitology, 2013, 134, 141-147.	0.5	24
312	The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment. PLoS ONE, 2013, 8, e66562.	1.1	24
313	<i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97.	0.7	24
314	Taxonomy and Molecular Taxonomy. , 2014, , 3-41.		24
315	Emergence of zoonotic Cryptosporidium parvum in China. Trends in Parasitology, 2022, 38, 335-343.	1.5	24
316	Biallelic Polymorphism in the Intron Region of b-Tubulin Gene of Cryptosporidium Parasites. Journal of Parasitology, 1999, 85, 154.	0.3	23
317	Epidemiology and Strain Variation of <i>Cryptosporidium parvum</i> ., 2000, 6, 116-139.		23
318	Molecular characterization of a new genotype of Cryptosporidium from American minks (Mustela) Tj ETQq0 0 0	rgBT_/Ove	rloဌk 10 Tf 50
319	Molecular characterization of Giardia duodenalis isolates from police and farm dogs in China. Experimental Parasitology, 2013, 135, 223-226.	0.5	23
320	Identification of a New Microsporidian Parasite Related to Vittaforma corneae in HIV-Positive and HIV-Negative Patients from Portugal. Journal of Eukaryotic Microbiology, 2003, 50, 586-590.	0.8	22
321	Natural infection of Cryptosporidium muris in ostriches (Struthio camelus). Veterinary Parasitology, 2014, 205, 518-522.	0.7	22
322	Subtype analysis of zoonotic pathogen Cryptosporidium skunk genotype. Infection, Genetics and Evolution, 2017, 55, 20-25.	1.0	22
323	Genotypes and public health potential of Enterocytozoon bieneusi and Giardia duodenalis in crab-eating macaques. Parasites and Vectors, 2019, 12, 254.	1.0	22
324	Molecular characterisation of Cryptosporidium (Apicomplexa) in children and cattle in Romania. Folia Parasitologica, 2015, 62, .	0.7	22

#	Article	IF	CITATIONS
325	A Randomized Controlled Trial to Assess the Impact of Ceramic Water Filters on Prevention of Diarrhea and Cryptosporidiosis in Infants and Young Children—Western Kenya, 2013. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1260-1268.	0.6	22
326	Molecular Characterization of the Cryptosporidium parvum IOWA Isolate Kept in Different Laboratories. Journal of Eukaryotic Microbiology, 2006, 53, S40-S42.	0.8	21
327	Molecular Characterization of Cryptosporidium spp. in HIV-infected Persons in Benin City, Edo State, Nigeria. Fooyin Journal of Health Sciences, 2010, 2, 85-89.	0.2	21
328	First molecular characterization of <i>Cryptosporidium</i> in Yemen. Parasitology, 2013, 140, 729-734.	0.7	21
329	Divergent Cryptosporidium parvum subtype and Enterocytozoon bieneusi genotypes in dromedary camels in Algeria. Parasitology Research, 2018, 117, 905-910.	0.6	21
330	Different distribution of Cryptosporidium species between horses and donkeys. Infection, Genetics and Evolution, 2019, 75, 103954.	1.0	21
331	Molecular genotyping of human cryptosporidiosis in Northern Ireland: epidemioiogical aspects and review. Irish Journal of Medical Science, 2001, 170, 246-250.	0.8	20
332	Outbreak of cryptosporidiosis at a California waterpark: employee and patron roles and the long road towards prevention. Epidemiology and Infection, 2007, 135, 302-310.	1.0	20
333	Community Laboratory Testing for Cryptosporidium: Multicenter Study Retesting Public Health Surveillance Stool Samples Positive for Cryptosporidium by Rapid Cartridge Assay with Direct Fluorescent Antibody Testing. PLoS ONE, 2017, 12, e0169915.	1.1	20
334	Zoonotic potential of Enterocytozoon bieneusi and Giardia duodenalis in horses and donkeys in northern China. Parasitology Research, 2020, 119, 1101-1108.	0.6	20
335	Development of a Subtyping Tool for Zoonotic Pathogen <i>Cryptosporidium canis</i> . Journal of Clinical Microbiology, 2021, 59, .	1.8	20
336	The identification of the Cryptosporidium ubiquitum in pre-weaned Ovines from Aba Tibetan and Qiang autonomous prefecture in China. Biomedical and Environmental Sciences, 2011, 24, 315-20.	0.2	20
337	The importance of subtype analysis of Cryptosporidium spp. in epidemiological investigations of human cryptosporidiosis in Iran and other Mideast countries. Gastroenterology and Hepatology From Bed To Bench, 2012, 5, 67-70.	0.6	20
338	Cryptosporidium muris in a Reticulated Giraffe (Giraffa camelopardalis reticulata). Journal of Parasitology, 2010, 96, 211-212.	0.3	19
339	Subtype distribution of zoonotic pathogen <i>Cryptosporidium felis</i> in humans and animals in several countries. Emerging Microbes and Infections, 2020, 9, 2446-2454.	3.0	19
340	Molecular characterization and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium sp. in farmed masked palm civets (Paguma larvata) in southern China. Parasites and Vectors, 2020, 13, 403.	1.0	19
341	Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis). Parasites and Vectors, 2020, 13, 149.	1.0	19
342	Detection of <i>Cryptosporidium parvum</i> in lettuce. International Journal of Food Science and Technology, 2007, 42, 385-393.	1.3	18

#	Article	IF	CITATIONS
343	Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Frontiers in Microbiology, 2019, 10, 354.	1.5	18
344	Subtyping Cryptosporidium ryanae: A Common Pathogen in Bovine Animals. Microorganisms, 2020, 8, 1107.	1.6	18
345	Response to the newly proposed species Cryptosporidium pestis. Trends in Parasitology, 2007, 23, 41-42.	1.5	17
346	Genotypes of <i>Cryptosporidium</i> spp. and <i>Enterocytozoon bieneusi</i> in Human Immunodeficiency Virusâ€Infected Patients in Lagos, Nigeria. Journal of Eukaryotic Microbiology, 2016, 63, 414-418.	0.8	17
347	Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?. Parasitology Research, 2019, 118, 3195-3204.	0.6	17
348	Host-adapted Cryptosporidium and Enterocytozoon bieneusi genotypes in straw-colored fruit bats in Nigeria. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 19-24.	0.6	17
349	Molecular characterization of the waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. in wastewater and sewage in Guangzhou, China. Parasites and Vectors, 2021, 14, 66.	1.0	17
350	Giardiasis outbreak at a camp after installation of a slow-sand filtration water-treatment system. Epidemiology and Infection, 2011, 139, 713-717.	1.0	16
351	Cryptosporidium genotypes and subtypes distribution in river water in Iran. Journal of Water and Health, 2015, 13, 600-606.	1.1	16
352	Preventing community-wide transmission ofCryptosporidium: a proactive public health response to a swimming pool-associated outbreak – Auglaize County, Ohio, USA. Epidemiology and Infection, 2015, 143, 3459-3467.	1.0	16
353	Preliminary Characterization of MEDLE-2, a Protein Potentially Involved in the Invasion of Cryptosporidium parvum. Frontiers in Microbiology, 2017, 8, 1647.	1.5	16
354	Characterization of INS-15, A Metalloprotease Potentially Involved in the Invasion of Cryptosporidium parvum. Microorganisms, 2019, 7, 452.	1.6	16
355	Enterocytozoon bieneusi. Trends in Parasitology, 2022, 38, 95-96.	1.5	16
356	Detection of the Cryptosporidium parvum "Human" Genotype in a Dugong (Dugong dugon). Journal of Parasitology, 2000, 86, 1352.	0.3	15
357	Molecular detection of Cryptosporidium spp. infections in water buffaloes from northeast Thailand. Tropical Animal Health and Production, 2014, 46, 487-490.	0.5	15
358	Clinical Manifestations of Cryptosporidiosis and Identification of a New Cryptosporidium Subtype in Patients From Sonora, Mexico. Pediatric Infectious Disease Journal, 2018, 37, e136-e138.	1.1	15
359	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	1.0	15
360	Infectivity of Moniezia benedeni and Monieza expansa to oribatid mites from Ohio and Georgia. Veterinary Parasitology, 1992, 45, 101-110.	0.7	14

#	Article	IF	CITATIONS
361	Influence of adjuvants on murine immune responses against the Câ€terminal 19â€∫kDa fragment of Plasmodium vivax merozoite surface proteinâ€1 (MSPâ€1). Parasite Immunology, 1996, 18, 547-558.	0.7	14
362	Development, Characterization and Immunogenicity of a Multi-Stage, Multivalent <i>Plasmodium falciparum</i> Vaccine Antigen (FALVAC-1A) Expressed in <i>Escherichia coli</i> . Hum Vaccin, 2006, 2, 14-23.	2.4	14
363	Development of a multilocus sequence typing tool for high-resolution subtyping and genetic structure characterization of Cryptosporidium ubiquitum. Infection, Genetics and Evolution, 2016, 45, 256-261.	1.0	14
364	<i>Cryptosporidium</i> infecting wild cricetid rodents from the subfamilies Arvicolinae and Neotominae. Parasitology, 2018, 145, 326-334.	0.7	14
365	Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasites and Vectors, 2018, 11, 312.	1.0	14
366	Prolonged expression of IFNÎ ³ induced by protective blood-stage immunization against Plasmodium yoelii malaria. Vaccine, 1999, 18, 173-180.	1.7	13
367	90-Kilodalton Heat Shock Protein, Hsp90, as a Target for Genotyping <i>Cryptosporidium</i> spp. Known To Infect Humans. Eukaryotic Cell, 2009, 8, 478-482.	3.4	13
368	Chick embryo tracheal organ: A new and effective in vitro culture model for Cryptosporidium baileyi. Veterinary Parasitology, 2012, 188, 376-381.	0.7	13
369	Genotypes of <i>Echinococcus granulosus</i> in Animals from Yushu, Northeastern China. Vector-Borne and Zoonotic Diseases, 2013, 13, 134-137.	0.6	13
370	Persistent Occurrence of Cryptosporidium hominis and Giardia duodenalis Subtypes in a Welfare Institute. Frontiers in Microbiology, 2018, 9, 2830.	1.5	13
371	Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. Infection, Genetics and Evolution, 2021, 89, 104736.	1.0	13
372	Advances in molecular epidemiology of cryptosporidiosis in dogs and cats. International Journal for Parasitology, 2021, 51, 787-795.	1.3	13
373	Cryptosporidium and Cryptosporidiosis. , 2006, , 57-108.		13
374	Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microbial Genomics, 2020, 6, .	1.0	13
375	PCR-Mediated Recombination between Cryptosporidium spp. of Lizards and Snakes. Journal of Eukaryotic Microbiology, 2003, 50, 563-565.	0.8	12
376	Occurrence of Giardia duodenalis assemblages in alpacas in the Andean region. Parasitology International, 2014, 63, 31-34.	0.6	12
377	Isolation, genotyping and subtyping of single Cryptosporidium oocysts from calves with special reference to zoonotic significance. Veterinary Parasitology, 2019, 271, 80-86.	0.7	12
378	Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119, 3033-3040.	0.6	12

#	Article	IF	CITATIONS
379	Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. Infection, Genetics and Evolution, 2021, 92, 104859.	1.0	12
380	Adjuvants and Malaria Vaccine Development. , 2002, 80, 343-365.		11
381	Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Experimental Parasitology, 2018, 184, 121-127.	0.5	11
382	Differential Expression of Three Cryptosporidium Species-Specific MEDLE Proteins. Frontiers in Microbiology, 2019, 10, 1177.	1.5	11
383	Cryptosporidiosis outbreak caused by <i>Cryptosporidium parvum</i> subtype IIdA20G1 in neonatal calves. Transboundary and Emerging Diseases, 2022, 69, 278-285.	1.3	11
384	Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms, 2021, 9, 151.	1.6	11
385	Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats. Pathogens, 2021, 10, 800.	1.2	11
386	Molecular Epidemiology of Human Cryptosporidiosis. , 2003, , 121-146.		10
387	Epidemiological Observations on Cryptosporidiosis in Diarrheic Goat Kids in Greece. Veterinary Medicine International, 2015, 2015, 1-4.	0.6	10
388	Molecular characterization of zoonotic pathogens Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in calves in Algeria. Veterinary Parasitology: Regional Studies and Reports, 2017, 8, 66-69.	0.3	10
389	Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. MBio, 2021, 12, .	1.8	10
390	Prevalence, Clinical Manifestations and Genotyping of Spp. in Patients with Gastrointestinal Illnesses in Western Iran. Iranian Journal of Parasitology, 2017, 12, 169-176.	0.6	10
391	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	3.5	10
392	Effect of Immune Activation Induced byCryptosporidium parvumWhole Antigen on In Vitro Human Immunodeficiency Virus Type 1 Infection. Journal of Infectious Diseases, 1999, 180, 559-563.	1.9	9
393	Fast Technology Analysis Enables Identification of Species and Genotypes of Latent Microsporidia Infections in Healthy Native Cameroonians. Journal of Eukaryotic Microbiology, 2016, 63, 146-152.	0.8	9
394	Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. International Journal for Parasitology, 2021, 51, 215-223.	1.3	9
395	Zoonotic parasites in farmed exotic animals in China: Implications to public health. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 241-247.	0.6	9
396	Genetic Characterization of Cryptosporidium cuniculus from Rabbits in Egypt. Pathogens, 2021, 10, 775.	1.2	9

#	Article	IF	CITATIONS
397	Outbreak of cryptosporidiosis associated with a man-made chlorinated lakeTarrant County, Texas, 2008. Journal of Environmental Health, 2012, 75, 14-9.	0.5	9
398	Molecular Phylogeny and Evolutionary Relationships of Cryptosporidium Parasites at the Actin Locus. Journal of Parasitology, 2002, 88, 388.	0.3	8
399	Cryptosporidium tyzzeri and Cryptosporidium pestis: Which name is valid?. Experimental Parasitology, 2012, 130, 308-309.	0.5	8
400	Differences in staining intensities affect reported occurrences and concentrations of Giardiaspp. in surface drinking water sources. Journal of Applied Microbiology, 2017, 123, 1607-1613.	1.4	8
401	Outbreaks associated with treated recreational water - United States, 2000-2014. American Journal of Transplantation, 2018, 18, 1815-1819.	2.6	8
402	Cryptosporidium Species and C. parvum Subtypes in Farmed Bamboo Rats. Pathogens, 2020, 9, 1018.	1.2	8
403	Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 907.	1.5	8
404	Subtype Characterization and Zoonotic Potential of Cryptosporidium felis in Cats in Guangdong and Shanghai, China. Pathogens, 2021, 10, 89.	1.2	8
405	Cryptosporidium Genotyping for Epidemiology Tracking. Methods in Molecular Biology, 2020, 2052, 103-116.	0.4	8
406	Cryptosporidium and Cryptosporidiosis. , 2018, , 73-117.		8
407	Development and Application of a gp60-Based Subtyping Tool for Cryptosporidium bovis. Microorganisms, 2021, 9, 2067.	1.6	8
408	Diarrhoea outbreak caused by coinfections of <i>Cryptosporidium parvum</i> subtype IIdA20G1 and rotavirus in preâ€weaned dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	8
409	Characterization of a Cryptosporidium parvum Gene Encoding a Protein with Homology to Long Chain Fatty Acid Synthetase. Journal of Eukaryotic Microbiology, 2003, 50, 534-538.	0.8	7
410	Trichostatin A, a Histone Deacetylase Inhibitor, Alleviates Eosinophilic Meningitis Induced by Angiostrongylus cantonensis Infection in Mice. Frontiers in Microbiology, 2019, 10, 2280.	1.5	7
411	Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health, 2020, 11, 100184.	1.5	7
412	Expression and Functional Studies of INS-5, an Insulinase-Like Protein in Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 719.	1.5	7
413	A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. Journal of Infection, 2022, 84, 710-721.	1.7	7
414	Partial Resistance to Infection by R5X4 Primary HIV Type 1 Isolates in an Exposed-Uninfected Individual Homozygous for CCR5 32-Base Pair Deletion. AIDS Research and Human Retroviruses, 1999, 15, 1201-1208.	0.5	6

#	Article	IF	CITATIONS
415	Genotyping Encephalitozoon Parasites Using Multilocus Analyses of Genes with Repetitive Sequences. Journal of Eukaryotic Microbiology, 2001, 48, 63s-65s.	0.8	6
416	The 12th International Workshops on Opportunistic Protists (<scp>IWOP</scp> â€12). Journal of Eukaryotic Microbiology, 2013, 60, 298-308.	0.8	6
417	Cryptosporidium canis in Two Mexican Toddlers. Pediatric Infectious Disease Journal, 2016, 35, 1265-1266.	1.1	6
418	Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 622203.	1.5	6
419	Molecular Epidemiology *. , 2007, , 119-172.		6
420	Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Frontiers in Microbiology, 2021, 12, 810142.	1.5	6
421	Cryptosporidium parvum as a risk factor of diarrhea occurrence in neonatal alpacas in Peru. Parasitology Research, 2020, 119, 243-248.	0.6	5
422	Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health, 2021, 13, 100269.	1.5	5
423	Molecular epidemiology of human cryptosporidiosis in developing countries , 2009, , 51-64.		5
424	Comparative Characterization of CpCDPK1 and CpCDPK9, Two Potential Drug Targets Against Cryptosporidiosis. Microorganisms, 2022, 10, 333.	1.6	5
425	High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasites and Vectors, 2022, 15, 85.	1.0	5
426	Characterization of a Pathogen Related to Vavraia culicis Detected in a Laboratory Colony of Anopheles stephensi. Journal of Eukaryotic Microbiology, 2006, 53, S65-S67.	0.8	4
427	Molecular Epidemiology. , 2007, , 119-171.		4
428	Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR. Experimental Parasitology, 2014, 144, 96-99.	0.5	4
429	Water quality, availability, and acute gastroenteritis on the Navajo Nation – a pilot case-control study. Journal of Water and Health, 2018, 16, 1018-1028.	1.1	4
430	Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms, 2019, 7, 366.	1.6	4
431	Cryptosporidiosis. , 2020, , 712-718.		4
432	Occurrence and molecular characterization of Giardia duodenalis in lambs in Djelfa, the central steppe of Algeria. Parasitology Research, 2020, 119, 2965-2973.	0.6	4

#	Article	IF	CITATIONS
433	Zoonotic parasites: the One Health challenge. Parasitology Research, 2021, 120, 4073-4074.	0.6	4
434	Molecular detection of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in school children at the Thai-Myanmar border. Parasitology Research, 2021, 120, 2887-2895.	0.6	4
435	Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biology, 2021, 19, 178.	1.7	4
436	Hypothesis: Cryptosporidium genetic diversity mirrors national disease notification rate. Parasites and Vectors, 2015, 8, 308.	1.0	3
437	Morphologic and Genotypic Characterization of Psoroptes Mites from Water Buffaloes in Egypt. PLoS ONE, 2015, 10, e0141554.	1.1	3
438	Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. Microorganisms, 2021, 9, 861.	1.6	3
439	Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Frontiers in Microbiology, 2021, 12, 651512.	1.5	3
440	Age and episodeâ€associated occurrence of <i>Cryptosporidium</i> species and subtypes in a birthâ€cohort of dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	3
441	Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microbial Genomics, 2021, 7, .	1.0	3
442	Prevalence and genetic characterization of Enterocytozoon bieneusi in children in Northeast Egypt. Parasitology Research, 2022, 121, 2087-2092.	0.6	3
443	Characterization of Dense Granule Metalloproteinase INS-16 in Cryptosporidium parvum. International Journal of Molecular Sciences, 2022, 23, 7617.	1.8	3
444	Low Incidence of Concurrent Enteric Infection Associated with Sporadic and Outbreak-Related Human Cryptosporidiosis in Northern Ireland. Journal of Clinical Microbiology, 2002, 40, 3107-3108.	1.8	2
445	Study of the 49 kDa excretory-secretory protein gene of Trichinella nativa and Trichinella spiralis. Helminthologia, 2007, 44, 120-125.	0.3	2
446	Comment on Zoonoses in the Bedroom (Response). Emerging Infectious Diseases, 2011, 17, 1340-1340.	2.0	2
447	Cryptosporidiosis. , 2013, , 673-679.		2
448	Multilocus sequence typing of Enterocytozoon bieneusi in crab-eating macaques (Macaca) Tj ETQq0 0 0 rgBT /C)verlock 1(0 Tf ₂ 50 142 To

449	Molecular epidemiology and typing of non-human isolates of <i>Cryptosporidium</i> , 2009, , 65-80.	2

#	Article	IF	CITATIONS
451	Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Frontiers in Microbiology, 2022, 13, 883674.	1.5	2
452	Decline in Cryptosporidium Infection in Free-Ranging Rhesus Monkeys in a Park After Public Health Interventions. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
453	Detection of SARS-CoV-2 RNA with a Simple Concentration Method in Wastewater in Turkey: A Pilot Study in ‡orum. Flora: the Journal of Infectious Diseses and Clinical Microbiology = Infeksiyon Hastalıkları Ve Klinik Mikrobiyoloji Dergisi, 2021, 26, 620-627.	0.0	1
454	Identification and Characterization of Three Spore Wall Proteins of Enterocytozoon Bieneusi. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
455	Molecular Characterization of a Cryptosporidium Isolate from a Black Bear. Journal of Parasitology, 2000, 86, 1166.	0.3	Ο
456	Acceptance of the 2012 Henry Baldwin Ward Medal: My Experience with Parasites. Journal of Parasitology, 2012, 98, 1073-1077.	0.3	0
457	Genetic Manipulation of Cryptosporidium. , 2021, , 489-498.		0
458	Prevalence and molecular characterization of novel species of the Diplomonad genus Octomitus (Diplomonadida: Giardiinae) from wildlife in a New York watershed. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 267-272.	0.6	0
459	Editorial: Recent Advances in the Controversial Human Pathogens Pneumocystis, Microsporidia and Blastocystis. Frontiers in Microbiology, 2021, 12, 701879.	1.5	0
460	Molecular epidemiology and systematics of Cryptosporidium parvum. Special Publication - Royal Society of Chemistry, 2007, , 44-50.	0.0	0
461	Isolation of Nucleic Acids from Protozoa. , 2009, , .		Ο
462	42.ÂWaterborne and Foodborne Parasites. , 2015, , .		0
463	Cryptosporidium. , 0, , 2435-2447.		0
464	Cryptosporidium. , 2018, , 551-563.		0