List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1692421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chemistry, 2018, 244, 331-339.	8.2	280
2	Fuzhuan Brick Tea Polysaccharides Attenuate Metabolic Syndrome in High-Fat Diet Induced Mice in Association with Modulation in the Gut Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 2783-2795.	5.2	166
3	Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry, 2013, 71, 132-143.	5.8	122
4	Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea. International Journal of Biological Macromolecules, 2017, 101, 768-775.	7.5	104
5	Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Science, 2011, 9, 44.	1.7	97
6	Biochemical Components Associated With Microbial Community Shift During the Pile-Fermentation of Primary Dark Tea. Frontiers in Microbiology, 2018, 9, 1509.	3.5	78
7	Evaluation of chemical property, cytotoxicity and antioxidant activity in vitro and in vivo of polysaccharides from Fuzhuan brick teas. International Journal of Biological Macromolecules, 2018, 116, 120-127.	7.5	70
8	Shifts in diversity and function of the bacterial community during the manufacture of Fu brick tea. Food Microbiology, 2019, 80, 70-76.	4.2	68
9	UPLC–QQQ–MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chemistry, 2022, 378, 131999.	8.2	62
10	Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chemistry, 2021, 344, 128576.	8.2	59
11	Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. International Journal of Biological Macromolecules, 2019, 140, 858-870.	7.5	58
12	Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	56
13	Advances in physiological functions and mechanisms of (â^')-epicatechin. Critical Reviews in Food Science and Nutrition, 2021, 61, 211-233.	10.3	54
14	Tea Polysaccharides as Potential Therapeutic Options for Metabolic Diseases. Journal of Agricultural and Food Chemistry, 2019, 67, 5350-5360.	5.2	48
15	Research progress of black tea thearubigins: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 1556-1566.	10.3	47
16	Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Applied Microbiology and Biotechnology, 2019, 103, 5269-5283.	3.6	43
17	Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. Ecotoxicology and Environmental Safety, 2020, 192, 110315.	6.0	42
18	Neuroprotective Effects of Theaflavins Against Oxidative Stress-Induced Apoptosis in PC12 Cells. Neurochemical Research, 2016, 41, 3364-3372.	3.3	40

#	Article	IF	CITATIONS
19	Dynamic changes of metabolic profile and taste quality during the long-term aging of Qingzhuan Tea: The impact of storage age. Food Chemistry, 2021, 359, 129953.	8.2	40
20	The Quality Control of Tea by Near-Infrared Reflectance (NIR) Spectroscopy and Chemometrics. Journal of Spectroscopy, 2019, 2019, 1-11.	1.3	36
21	Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. FìtoterapA¬Ã¢, 2020, 145, 104634.	2.2	35
22	<scp>l</scp> -Theanine affects intestinal mucosal immunity by regulating short-chain fatty acid metabolism under dietary fiber feeding. Food and Function, 2020, 11, 8369-8379.	4.6	32
23	Structural Characterization and Immunostimulatory Activity of Heteropolysaccharides from Fuzhuan Brick Tea. Journal of Agricultural and Food Chemistry, 2021, 69, 1368-1378.	5.2	32
24	Metabolomics analysis of Camellia sinensis with respect to harvesting time. Food Research International, 2020, 128, 108814.	6.2	31
25	Enhanced Antiarthritic Efficacy by Nanoparticles of (â^')-Epigallocatechin Gallate–Glucosamine–Casein. Journal of Agricultural and Food Chemistry, 2019, 67, 6476-6486.	5.2	30
26	Catechins enhance skeletal muscle performance. Critical Reviews in Food Science and Nutrition, 2020, 60, 515-528.	10.3	29
27	Molecular Characterization of WRKY Transcription Factors That Act as Negative Regulators of O-Methylated Catechin Biosynthesis in Tea Plants (<i>Camellia sinensis</i> L.). Journal of Agricultural and Food Chemistry, 2018, 66, 11234-11243.	5.2	25
28	Comparing characteristic aroma components of bead-shaped green teas from different regions using headspace solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry combined with chemometrics. European Food Research and Technology, 2020, 246, 1703-1714.	3.3	25
29	Dynamic changes in the aroma profile of Qingzhuan tea during its manufacture. Food Chemistry, 2022, 375, 131847.	8.2	25
30	Jasmine Tea Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior in Rats via the Gut-Brain Axis. Nutrients, 2022, 14, 99.	4.1	25
31	A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.). International Journal of Molecular Sciences, 2015, 16, 14007-14038.	4.1	24
32	Responses of Microbial Communities and Interaction Networks to Different Management Practices in Tea Plantation Soils. Sustainability, 2019, 11, 4428.	3.2	24
33	Analysis of Young Shoots of †Anji Baicha' (<i>Camellia sinensis</i>) at Three Developmental Stages Using Nontargeted LCâ€MSâ€Based Metabolomics. Journal of Food Science, 2019, 84, 1746-1757.	3.1	24
34	The R2R3-MYB transcription factor CsMYB73 negatively regulates l-Theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science, 2020, 298, 110546.	3.6	24
35	Characterization of key aroma compounds and core functional microorganisms in different aroma types of Liupao tea. Food Research International, 2022, 152, 110925.	6.2	24
36	Effects of polysaccharides from Fuzhuan brick tea on immune function and gut microbiota of cyclophosphamide-treated mice. Journal of Nutritional Biochemistry, 2022, 101, 108947.	4.2	24

#	Article	IF	CITATIONS
37	A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Critical Reviews in Food Science and Nutrition, 2023, 63, 5447-5464.	10.3	24
38	Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota. Food Research International, 2022, 152, 110901.	6.2	23
39	Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology. Food Chemistry, 2022, 385, 132718.	8.2	23
40	Preparation of theasinensin A and theasinensin B and exploration of their inhibitory mechanism on α-glucosidase. Food and Function, 2020, 11, 3527-3538.	4.6	22
41	Bioâ€functional hydrogel with antibacterial and antiâ€inflammatory dual properties to combat with burn wound infection. Bioengineering and Translational Medicine, 2023, 8, .	7.1	22
42	The metabolic regulation of Fuzhuan brick tea in high-fat diet-induced obese mice and the potential contribution of gut microbiota. Food and Function, 2022, 13, 356-374.	4.6	20
43	<scp>l</scp> -Theanine regulates glutamine metabolism and immune function by binding to cannabinoid receptor 1. Food and Function, 2021, 12, 5755-5769.	4.6	19
44	Development and Validation of an Analytical Method Based on HPLC-ELSD for the Simultaneous Determination of Rosmarinic Acid, Carnosol, Carnosic Acid, Oleanolic Acid and Ursolic Acid in Rosemary. Molecules, 2019, 24, 323.	3.8	18
45	New Acylglycosides Flavones from Fuzhuan Brick Tea and Simulation Analysis of Their Bioactive Effects. International Journal of Molecular Sciences, 2019, 20, 494.	4.1	18
46	Theaflavin Promotes Mitochondrial Abundance and Glucose Absorption in Myotubes by Activating the CaMKK2-AMPK Signal Axis via Calcium-Ion Influx. Journal of Agricultural and Food Chemistry, 2021, 69, 8144-8159.	5.2	18
47	Research progress of epigallocatechin-3-gallate (EGCG) on anti-pathogenic microbes and immune regulation activities. Food and Function, 2021, 12, 9607-9619.	4.6	17
48	Effects of electrostatic spray drying on the sensory qualities, aroma profile and microstructural features of instant Pu-erh tea. Food Chemistry, 2022, 373, 131546.	8.2	17
49	Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells. Proteome Science, 2013, 11, 32.	1.7	16
50	Role and mechanism of catechin in skeletal muscle cell differentiation. Journal of Nutritional Biochemistry, 2019, 74, 108225.	4.2	16
51	Anti-inflammatory and gut microbiota modulatory effects of polysaccharides from Fuzhuan brick tea on colitis in mice induced by dextran sulfate sodium. Food and Function, 2022, 13, 649-663.	4.6	16
52	Instant Dark Tea Alleviates Hyperlipidaemia in High-Fat Diet-Fed Rat: From Molecular Evidence to Redox Balance and Beyond. Frontiers in Nutrition, 2022, 9, 819980.	3.7	16
53	Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. Journal of Agricultural and Food Chemistry, 2022, 70, 5610-5623.	5.2	16
54	An Aqueous Asymmetric Supercapacitor Based on Activated Carbon and Tungsten Trioxide Nanowire Electrodes. Chinese Journal of Chemistry, 2017, 35, 61-66.	4.9	14

#	Article	IF	CITATIONS
55	Nano-Strategies for Enhancing the Bioavailability of Tea Polyphenols: Preparation, Applications, and Challenges. Foods, 2022, 11, 387.	4.3	14
56	Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities. Antioxidants, 2021, 10, 1513.	5.1	13
57	Mechanisms of Nitric Oxide in the Regulation of Chilling Stress Tolerance in Camellia sinensis. Horticulturae, 2021, 7, 410.	2.8	13
58	Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 144-151.	2.3	12
59	Separation of catechins and O-methylated (â^')-epigallocatechin gallate using polyamide thin-layer chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1017-1018, 221-225.	2.3	12
60	Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Advances, 2017, 7, 48333-48340.	3.6	12
61	Carbon and Nitrogen Metabolism Are Jointly Regulated During Shading in Roots and Leaves of Camellia Sinensis. Frontiers in Plant Science, 2022, 13, 894840.	3.6	11
62	Genome-wide identification and characterization of phosphate transporter gene family members in tea plants (Camellia sinensis L. O. kuntze) under different selenite levels. Plant Physiology and Biochemistry, 2021, 166, 668-676.	5.8	10
63	Tea Polyphenols Attenuates Inflammation via Reducing Lipopolysaccharides Level and Inhibiting TLR4/NF-I®B Pathway in Obese Mice. Plant Foods for Human Nutrition, 2022, 77, 105-111.	3.2	10
64	Analysis of Volatile Components of Jasmine and Jasmine Tea during Scenting Process. Molecules, 2022, 27, 479.	3.8	9
65	Theaflavin Promotes Myogenic Differentiation by Regulating the Cell Cycle and Surface Mechanical Properties of C2C12 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 9978-9992.	5.2	8
66	Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Scientia Horticulturae, 2022, 295, 110823.	3.6	8
67	Electrostatically self-assembled filamentous sodium alginate/Îμ-polylysine fiber with antibacterial, bioadhesion and biocompatible in suturing wound. International Journal of Biological Macromolecules, 2022, 200, 1-11.	7.5	8
68	Theanine Improves High-Dose Epigallocatechin-3-Gallate-Induced Lifespan Reduction in Caenorhabditis elegans. Foods, 2021, 10, 1404.	4.3	7
69	Identification and expression profiling of MYB transcription factors related to l-theanine biosynthesis in Camellia sinensis. International Journal of Biological Macromolecules, 2020, 164, 4306-4317.	7.5	6
70	Chemical synthesis of the <i>Pseudomonas aeruginosa</i> O11 O-antigen trisaccharide based on neighboring electron-donating effect. Journal of Carbohydrate Chemistry, 2020, 39, 374-397.	1.1	6
71	Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genomics, 2022, 23, 29.	2.8	6
72	Isolation of Dihydroartemisinic Acid from <i>Artemisia annua</i> L. By-Product by Combining Ultrasound-Assisted Extraction with Response Surface Methodology. Chemical and Pharmaceutical Bulletin, 2017, 65, 746-753.	1.3	5

#	Article	IF	CITATIONS
73	Effect of fermentation time and temperature on the of polyphenol compounds change of different Congou black tea. Journal of Food Processing and Preservation, 2021, 45, e15844.	2.0	5
74	Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant (Camellia sinensis). International Journal of Molecular Sciences, 2021, 22, 10949.	4.1	4
75	Determination of dihydroartemisinic acid in <i>Artemisia annua</i> L. by gas chromatography with flame ionization detection. Biomedical Chromatography, 2017, 31, e3824.	1.7	3
76	Salting-out re-distillation combined with sensory-directed analysis to recover odor-active compounds for improving the flavor quality of instant Pu-erh tea. Food Chemistry: X, 2022, 14, 100310.	4.3	3
77	Modification and Validation of a High-Performance Liquid Chromatography Method for Quantification of Huperzine A in Huperzia Crispata. Journal of AOAC INTERNATIONAL, 2010, 93, 1428-1435.	1.5	2
78	Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules, 2022, 12, 688.	4.0	2
79	Preparative Separation of High-Purity Dihydroartemisinic Acid from Artemisinin Production Waste by Combined Chromatography. Chemical and Pharmaceutical Bulletin, 2018, 66, 319-326.	1.3	1
80	Growth of Ordered Graphene Ribbons by Sublimation Epitaxy. Crystals, 2018, 8, 449.	2.2	0
81	Development and Application of a Fast Gas Chromatographic Method Offer New Insights into I-theanine Production Regulation in Camellia sinensis L Journal of Agricultural and Food Chemistry, 2021, 69, 11142-11150.	5.2	0