
Andreas Bracher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475, 324-332.	27.8	2,762
2	Molecular Chaperone Functions in Protein Folding and Proteostasis. Annual Review of Biochemistry, 2013, 82, 323-355.	11.1	1,218
3	Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science, 2012, 337, 1348-1352.	12.6	357
4	The GroEL–GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends in Biochemical Sciences, 2016, 41, 62-76.	7.5	325
5	Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO Journal, 2006, 25, 2519-2528.	7.8	310
6	The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure, 2012, 20, 814-825.	3.3	261
7	Structural Basis for the Cooperation of Hsp70 and Hsp110 Chaperones in Protein Folding. Cell, 2008, 133, 1068-1079.	28.9	235
8	Firefly luciferase mutants as sensors of proteome stress. Nature Methods, 2011, 8, 879-884.	19.0	190
9	Selective inhibitors of the FK506-binding protein 51 by induced fit. Nature Chemical Biology, 2015, 11, 33-37.	8.0	188
10	Regulation of Hsp70 Function by HspBP1. Molecular Cell, 2005, 17, 367-379.	9.7	185
11	Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature, 2019, 566, 131-135.	27.8	185
12	Biogenesis and Metabolic Maintenance of Rubisco. Annual Review of Plant Biology, 2017, 68, 29-60.	18.7	176
13	The nucleotide exchange factors of Hsp70 molecular chaperones. Frontiers in Molecular Biosciences, 2015, 2, 10.	3.5	172
14	Plant RuBisCo assembly in <i>E. coli</i> with five chloroplast chaperones including BSD2. Science, 2017, 358, 1272-1278.	12.6	172
15	Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature, 2010, 463, 197-202.	27.8	165
16	Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO Journal, 2002, 21, 6114-6124.	7.8	159
17	Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature, 2011, 479, 194-199.	27.8	141
18	The Matrix Protein VP40 from Ebola Virus Octamerizes into Pore-like Structures with Specific RNA Binding Properties. Structure, 2003, 11, 423-433.	3.3	137

#	Article	IF	CITATIONS
19	Structure and Function of RbcX, anÂAssembly Chaperone for Hexadecameric Rubisco. Cell, 2007, 129, 1189-1200.	28.9	137
20	The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 149-154.	7.1	136
21	Zinc plays a key role in human and bacterial GTP cyclohydrolase I. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13567-13572.	7.1	131
22	Active site topology and reaction mechanism of GTP cyclohydrolase I Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12120-12125.	7.1	122
23	Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2984-2989.	7.1	120
24	GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, 2014, 157, 922-934.	28.9	116
25	X-ray Structure of a Neuronal Complexin-SNARE Complex from Squid. Journal of Biological Chemistry, 2002, 277, 26517-26523.	3.4	111
26	Large FK506-Binding Proteins Shape the Pharmacology of Rapamycin. Molecular and Cellular Biology, 2013, 33, 1357-1367.	2.3	106
27	High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochemical and Biophysical Research Communications, 2021, 538, 54-62.	2.1	100
28	Structure of green-type Rubisco activase from tobacco. Nature Structural and Molecular Biology, 2011, 18, 1366-1370.	8.2	97
29	Structure of human heat-shock transcription factor 1 in complex with DNA. Nature Structural and Molecular Biology, 2016, 23, 140-146.	8.2	87
30	Biosynthesis of Pteridines. Reaction Mechanism of GTP Cyclohydrolase I. Journal of Molecular Biology, 2003, 326, 503-516.	4.2	70
31	Crystal structure of the GABA A â€receptorâ€associated protein, GABARAP. EMBO Reports, 2002, 3, 183-189.	4.5	65
32	Biosynthesis of Pteridines. Journal of Biological Chemistry, 1998, 273, 28132-28141.	3.4	62
33	Structure and mechanism of the Rubisco-assembly chaperone Raf1. Nature Structural and Molecular Biology, 2015, 22, 720-728.	8.2	61
34	Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nature Structural and Molecular Biology, 2013, 20, 929-935.	8.2	60
35	Evaluation of Synthetic FK506 Analogues as Ligands for the FK506-Binding Proteins 51 and 52. Journal of Medicinal Chemistry, 2012, 55, 4114-4122.	6.4	59
36	GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG Domain Proteins: Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. Sub-Cellular Biochemistry, 2015, 78, 1-33.	2.4	59

#	Article	IF	CITATIONS
37	Structural characterization of the PPIase domain of FKBP51, a cochaperone of human Hsp90. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 549-559.	2.5	57
38	Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nature Structural and Molecular Biology, 2011, 18, 875-880.	8.2	56
39	Increasing the Efficiency of Ligands for FK506-Binding Protein 51 by Conformational Control. Journal of Medicinal Chemistry, 2013, 56, 3922-3935.	6.4	53
40	Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21208-21215.	7.1	52
41	Crystal Structure of an Archaeal Actin Homolog. Journal of Molecular Biology, 2006, 358, 145-156.	4.2	49
42	Structural Basis for Subunit Assembly in UDP-glucose Pyrophosphorylase from Saccharomyces cerevisiae. Journal of Molecular Biology, 2006, 364, 551-560.	4.2	49
43	Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase. Molecular Cell, 2017, 67, 744-756.e6.	9.7	47
44	Histidine 179 Mutants of GTP Cyclohydrolase I Catalyze the Formation of 2-Amino-5-formylamino-6-ribofuranosylamino-4(3H)-pyrimidinone Triphosphate. Journal of Biological Chemistry, 1999, 274, 16727-16735.	3.4	46
45	Exploration of Pipecolate Sulfonamides as Binders of the FK506-Binding Proteins 51 and 52. Journal of Medicinal Chemistry, 2012, 55, 4123-4131.	6.4	46
46	The X-ray crystal structure of neuronal Sec1 from squid sheds new light on the role of this protein in exocytosis. Structure, 2000, 8, 685-694.	3.3	45
47	Biosynthesis of Riboflavin. Journal of Biological Chemistry, 2001, 276, 22273-22277.	3.4	43
48	GroEL Ring Separation and Exchange in the Chaperonin Reaction. Cell, 2018, 172, 605-617.e11.	28.9	43
49	Crystal structures of neuronal squid Sec1 implicate inter-domain hinge movement in the release of t-SNAREs11Edited by R. Huber. Journal of Molecular Biology, 2001, 306, 7-13.	4.2	42
50	Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. Journal of Medicinal Chemistry, 2018, 61, 3660-3673.	6.4	42
51	Pathogenic Mutations Located in the Hydrophobic Core of the Prion Protein Interfere with Folding and Attachment of the Glycosylphosphatidylinositol Anchor. Journal of Biological Chemistry, 2005, 280, 9320-9329.	3.4	41
52	Crystal Structures of the Free and Ligand-Bound FK1–FK2 Domain Segment of FKBP52 Reveal a Flexible Inter-Domain Hinge. Journal of Molecular Biology, 2013, 425, 4134-4144.	4.2	41
53	Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynthesis Research, 2014, 119, 191-201.	2.9	40
54	Interaction of the Hsp110 Molecular Chaperones from S. cerevisiae with Substrate Protein. Journal of Molecular Biology, 2010, 401, 696-707.	4.2	38

#	Article	IF	CITATIONS
55	Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nature Plants, 2015, 1, 14002.	9.3	38
56	The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Communications, 2021, 12, 5999.	12.8	37
57	The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nature Communications, 2021, 12, 4863.	12.8	35
58	Structure of a halophilic nucleoside diphosphate kinase fromHalobacterium salinarum. FEBS Letters, 2005, 579, 6595-6600.	2.8	34
59	Structure–Affinity Relationship Analysis of Selective FKBP51 Ligands. Journal of Medicinal Chemistry, 2015, 58, 7796-7806.	6.4	32
60	Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51. Journal of Medicinal Chemistry, 2016, 59, 2410-2422.	6.4	31
61	Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biological Chemistry, 2006, 387, 1593-1600.	2.5	30
62	Dual Functions of a Rubisco Activase in Metabolic Repair and Recruitment to Carboxysomes. Cell, 2020, 183, 457-473.e20.	28.9	30
63	Biosynthesis of Pteridines. Stopped-Flow Kinetic Analysis of GTP Cyclohydrolase Iâ€. Biochemistry, 2001, 40, 7896-7902.	2.5	29
64	Reaction mechanism of GTP cyclohydrolase I: single turnover experiments using a kinetically competent reaction intermediate. Journal of Molecular Biology, 2002, 316, 829-837.	4.2	29
65	Rational Design and Asymmetric Synthesis of Potent and Neurotrophic Ligands for FK506â€Binding Proteins (FKBPs). Angewandte Chemie - International Edition, 2015, 54, 345-348.	13.8	27
66	Stereoselective Construction of the 5-Hydroxy Diazabicyclo[4.3.1]decane-2-one Scaffold, a Privileged Motif for FK506-Binding Proteins. Organic Letters, 2014, 16, 5254-5257.	4.6	26
67	L25 functions as a conserved ribosomal docking site shared by nascent chainâ€associated complex and signalâ€recognition particle. EMBO Reports, 2006, 7, 78-84.	4.5	24
68	Biosynthesis of Riboflavin. Journal of Biological Chemistry, 2001, 276, 44157-44162.	3.4	23
69	Picomolar FKBP inhibitors enabled by a single water-displacing methyl group in bicyclic [4.3.1] aza-amides. Chemical Science, 2021, 12, 14758-14765.	7.4	19
70	Ring Opening Is Not Rate-limiting in the GTP Cyclohydrolase I Reaction. Journal of Biological Chemistry, 2001, 276, 2622-2626.	3.4	18
71	Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. Molecular Cell, 2019, 74, 88-100.e9.	9.7	18
72	The chaperone Clusterin in neurodegenerationâ^'friend or foe?. BioEssays, 2022, 44, e2100287.	2.5	18

#	Article	IF	CITATIONS
73	Hsp90 structure: when two ends meet. Nature Structural and Molecular Biology, 2006, 13, 478-480.	8.2	17
74	Crystal structure of phosphoribulokinase from <i>Synechococcus</i> sp. strain PCC 6301. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 278-289.	0.8	15
75	Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii. PLoS ONE, 2015, 10, e0135448.	2.5	13
76	Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angewandte Chemie - International Edition, 2021, 60, 13257-13263.	13.8	13
77	Complementation of thefol2Deletion inSaccharomyces cerevisiaeby Human andEscherichia coliGenes Encoding GTP Cyclohydrolase I. Biochemical and Biophysical Research Communications, 1999, 255, 521-527.	2.1	10
78	Structure and mechanism of GTP cyclohydrolase I of <i>Escherichia coli</i> . Biochemical Society Transactions, 1996, 24, 37S-37S.	3.4	9
79	Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus. BMC Structural Biology, 2004, 4, 6.	2.3	9
80	A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. Journal of Medicinal Chemistry, 2020, 63, 231-240.	6.4	9
81	Structure and conformational cycle of a bacteriophage-encoded chaperonin. PLoS ONE, 2020, 15, e0230090.	2.5	8
82	L25 functions as a conserved ribosomal docking site shared by nascent chainâ€associated complex and signalâ€recognition particle. EMBO Reports, 2007, 8, 1086-1086.	4.5	7
83	Crystallization and preliminary X-ray analysis of squid neuronal Sec1. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 501-503.	2.5	5
84	Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. , 2007, , 1-12.		5
85	Towards a Complete Structure of Hsp90. Structure, 2005, 13, 501-502.	3.3	1
86	Crystal structure of the <i>Thermoplasma acidophilum</i> protein Ta1207. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 328-335.	0.8	0
87	Makrozyklische FKBP51â€Liganden enthüllen einen transienten Bindungsmodus mit erhöhter Selektivitä Angewandte Chemie, 2021, 133, 13366-13372.	2.0	0
88	Protein Folding Chaperonins. , 2021, , 116-120.		0
89	Studies on the Reaction Mechanism of GTP Cyclohydrolase I. , 2002, , 169-173.		0