
Philipp E. Bayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691546/publications.pdf Version: 2024-02-01

DHILIDD F RAVED

#	Article	IF	CITATIONS
1	Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome, 2022, 15, e20109.	2.8	53
2	The pangenome of banana highlights differences between genera and genomes. Plant Genome, 2022, 15, e20100.	2.8	37
3	<i>Amborella</i> gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. New Phytologist, 2022, 233, 1548-1555.	7.3	16
4	Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. Theoretical and Applied Genetics, 2022, 135, 1443-1455.	3.6	13
5	Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. Frontiers in Plant Science, 2022, 13, 811152.	3.6	1
6	Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. International Journal of Molecular Sciences, 2022, 23, 2671.	4.1	14
7	Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. International Journal of Molecular Sciences, 2022, 23, 2276.	4.1	12
8	<i>Brassica napus</i> genes <i>Rlm4</i> and <i>Rlm7</i> , conferring resistance to <i>Leptosphaeria maculans</i> , are alleles of the <i>Rlm9</i> wallâ€associated kinaseâ€kike resistance locus. Plant Biotechnology Journal, 2022, 20, 1229-1231.	8.3	24
9	Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction. BMC Plant Biology, 2022, 22, 180.	3.6	15
10	Pangenomics in crop improvement—from coding structural variations to finding regulatory variants with pangenome graphs. Plant Genome, 2022, 15, e20177.	2.8	33
11	Genetic and Genomic Resources for Soybean Breeding Research. Plants, 2022, 11, 1181.	3.5	5
12	Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. Biology, 2022, 11, 821.	2.8	4
13	Plant Genotype to Phenotype Prediction Using Machine Learning. Frontiers in Genetics, 2022, 13, .	2.3	21
14	Wheat Panache: A pangenome graph database representing presence–absence variation across sixteen bread wheat genomes. Plant Genome, 2022, 15, .	2.8	16
15	Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	27
16	Producing High-Quality Single Nucleotide Polymorphism Data for Genome-Wide Association Studies. Methods in Molecular Biology, 2022, , 153-159.	0.9	2
17	Evaluating Plant Gene Models Using Machine Learning. Plants, 2022, 11, 1619.	3.5	2
18	An SGSGeneloss-Based Method for Constructing a Gene Presence–Absence Table Using Mosdepth. Methods in Molecular Biology, 2022, , 73-80.	0.9	3

#	Article	IF	CITATIONS
19	In silico integration of disease resistance QTL, genes and markers with the Brassica juncea physical map. Molecular Breeding, 2022, 42, .	2.1	1
20	Machine learning in agriculture: from silos to marketplaces. Plant Biotechnology Journal, 2021, 19, 648-650.	8.3	15
21	Assembly of the nonâ€heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson. Plant Biotechnology Journal, 2021, 19, 966-976.	8.3	28
22	Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data, 2021, 8, 50.	5.3	38
23	Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. Theoretical and Applied Genetics, 2021, 134, 2035-2050.	3.6	5
24	Genotype–Environment mismatch of kelp forests under climate change. Molecular Ecology, 2021, 30, 3730-3746.	3.9	39
25	Resources for image-based high-throughput phenotyping in crops and data sharing challenges. Plant Physiology, 2021, 187, 699-715.	4.8	23
26	The application of pangenomics and machine learning in genomic selection in plants. Plant Genome, 2021, 14, e20112.	2.8	29
27	Current status of structural variation studies in plants. Plant Biotechnology Journal, 2021, 19, 2153-2163.	8.3	65
28	QTL Genetic Mapping Study for Traits Affecting Meal Quality in Winter Oilseed Rape (Brassica Napus L.). Genes, 2021, 12, 1235.	2.4	11
29	Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.	8.3	44
30	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
31	Marine heatwaves have minimal influence on the quality of adult Sydney rock oyster flesh. Science of the Total Environment, 2021, 795, 148846.	8.0	9
32	Genome-Wide Identification and Evolution of Receptor-Like Kinases (RLKs) and Receptor like Proteins (RLPs) in Brassica juncea. Biology, 2021, 10, 17.	2.8	20
33	Maize Yield Prediction at an Early Developmental Stage Using Multispectral Images and Genotype Data for Preliminary Hybrid Selection. Remote Sensing, 2021, 13, 3976.	4.0	31
34	High-Throughput Genotyping Technologies in Plant Taxonomy. Methods in Molecular Biology, 2021, 2222, 149-166.	0.9	2
35	Daisychain: Search and Interactive Visualisation of Homologs in Genome Assemblies. Agronomy, 2021, 11, 2587.	3.0	0
36	Characterization of disease resistance genes in the <i>Brassica napus</i> pangenome reveals significant structural variation. Plant Biotechnology Journal, 2020, 18, 969-982.	8.3	83

#	Article	IF	CITATIONS
37	Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. Trends in Genetics, 2020, 36, 132-145.	6.7	137
38	Induced Methylation in Plants as a Crop Improvement Tool: Progress and Perspectives. Agronomy, 2020, 10, 1484.	3.0	25
39	Plant pan-genomes are the new reference. Nature Plants, 2020, 6, 914-920.	9.3	302
40	Frontiers in Dissecting and Managing Brassica Diseases: From Reference-Based RGA Candidate Identification to Building Pan-RGAomes. International Journal of Molecular Sciences, 2020, 21, 8964.	4.1	14
41	Genome-wide identification and comparative analysis of resistance genes in Brassica juncea. Molecular Breeding, 2020, 40, 1.	2.1	17
42	Resistance Gene Analogs in the Brassicaceae: Identification, Characterization, Distribution, and Evolution. Plant Physiology, 2020, 184, 909-922.	4.8	33
43	Effect of Leptosphaeria maculans Infection on Promoter DNA Methylation of Defence Genes in Brassica napus. Agronomy, 2020, 10, 1072.	3.0	11
44	Trait associations in the pangenome of pigeon pea (<i>Cajanus cajan</i>). Plant Biotechnology Journal, 2020, 18, 1946-1954.	8.3	79
45	Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 2020, 56, 197-202.	7.1	193
46	Plant pangenomics: approaches, applications and advancements. Current Opinion in Plant Biology, 2020, 54, 18-25.	7.1	88
47	Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. Methods in Molecular Biology, 2020, 2107, 35-47.	0.9	7
48	Method for Genome-Wide Association Study: A Soybean Example. Methods in Molecular Biology, 2020, 2107, 147-158.	0.9	2
49	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	5.7	113
50	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	21.4	363
51	Genetic Diversity Linked to Haplotype Variation in the World Core Collection of Trifolium subterraneum for Boron Toxicity Tolerance Provides Valuable Markers for Pasture Breeding. Frontiers in Plant Science, 2019, 10, 1043.	3.6	2
52	Variation in abundance of predicted resistance genes in the <i>Brassica oleracea</i> pangenome. Plant Biotechnology Journal, 2019, 17, 789-800.	8.3	92
53	CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. Plant Journal, 2019, 98, 142-152.	5.7	21
54	High intraspecific diversity of <i>Restorerâ€ofâ€fertilityâ€like</i> genes in barley. Plant Journal, 2019, 97, 281-295.	5.7	24

#	Article	IF	CITATIONS
55	Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia. Briefings in Bioinformatics, 2019, 20, 384-389.	6.5	11
56	Adapting legume crops to climate change using genomic approaches. Plant, Cell and Environment, 2019, 42, 6-19.	5.7	74
57	INDEL variation in the regulatory region of the major flowering time gene <i>LanFTc1</i> is associated with vernalization response and flowering time in narrowâ€leafed lupin (<i>Lupinus angustifolius</i>) Tj ETQq1	1 0578431	4 r g BT /Overl
58	Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus. Crop and Pasture Science, 2018, 69, 72.	1.5	70
59	Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. Journal of Experimental Botany, 2018, 69, 3689-3702.	4.8	27
60	Bias in resistance gene prediction due to repeat masking. Nature Plants, 2018, 4, 762-765.	9.3	58
61	The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 2543-2554.	3.6	28
62	Large-Scale Structural Variation Detection in Subterranean Clover Subtypes Using Optical Mapping. Frontiers in Plant Science, 2018, 9, 971.	3.6	10
63	Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 887-901.	3.6	50
64	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
65	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
66	Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid <i>Brassica napus</i> . Plant Biotechnology Journal, 2018, 16, 1265-1274.	8.3	217
67	The pangenome of hexaploid bread wheat. Plant Journal, 2017, 90, 1007-1013.	5.7	313
68	An advanced reference genome of <i>Trifolium subterraneum</i> L. reveals genes related to agronomic performance. Plant Biotechnology Journal, 2017, 15, 1034-1046.	8.3	38
69	Improvements in Genomic Technologies: Application to Crop Genomics. Trends in Biotechnology, 2017, 35, 547-558.	9.3	72
70	Assembly and comparison of two closely related <i>Brassica napus</i> genomes. Plant Biotechnology Journal, 2017, 15, 1602-1610.	8.3	150
71	runBNG: a software package for BioNano genomic analysis on the command line. Bioinformatics, 2017, 33, 3107-3109.	4.1	10
72	BioNanoAnalyst: a visualisation tool to assess genome assembly quality using BioNano data. BMC Bioinformatics, 2017, 18, 323.	2.6	9

l

#	Article	IF	CITATIONS
73	A comprehensive draft genome sequence for lupin (<i>Lupinus angustifolius</i>), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal, 2017, 15, 318-330.	8.3	153
74	Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation. Frontiers in Plant Science, 2017, 8, 1463.	3.6	21
75	Genomics of Salinity. , 2016, , 179-194.		0
76	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	4.8	88
77	The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7, 13390.	12.8	375
78	An efficient approach to BAC based assembly of complex genomes. Plant Methods, 2016, 12, 2.	4.3	22
79	Centromere Locations in <i>Brassica</i> A and C Genomes Revealed Through Half-Tetrad Analysis. Genetics, 2016, 202, 513-523.	2.9	47
80	Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus. Frontiers in Plant Science, 2016, 7, 2062.	3.6	84
81	Skim-Based Genotyping by Sequencing Using a Double Haploid Population to Call SNPs, Infer Gene Conversions, and Improve Genome Assemblies. Methods in Molecular Biology, 2016, 1374, 285-292.	0.9	1
82	High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theoretical and Applied Genetics, 2015, 128, 1039-1047.	3.6	76
83	Identification and characterization of more than 4 million intervarietal <scp>SNP</scp> s across the group 7 chromosomes of bread wheat. Plant Biotechnology Journal, 2015, 13, 97-104.	8.3	43
84	Skim-Based Genotyping by Sequencing. Methods in Molecular Biology, 2015, 1245, 257-270.	0.9	39
85	openSNP–A Crowdsourced Web Resource for Personal Genomics. PLoS ONE, 2014, 9, e89204.	2.5	78
86	Highâ€resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes. New Phytologist, 2014, 202, 964-974.	7.3	31
87	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089
88	Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Frontiers in Plant Science, 2013, 4, 195.	3.6	38
89	Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection. Frontiers in Plant Science, 0, 13, .	3.6	4
90	A panâ€genome and chromosomeâ€length reference genome of narrowâ€leafed lupin (<i>Lupinus) Tj ETQq(</i>	0 0 rgBT /O 5.7	verlock 10 Tf 9

Journal, O, , .