Petri Kursula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691095/publications.pdf

Version: 2024-02-01

146 papers 4,350 citations

33 h-index 56 g-index

175 all docs

175 docs citations

175 times ranked

6418 citing authors

#	Article	IF	CITATIONS
1	Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neuroscience, 2015, 18, 631-636.	14.8	652
2	Recognition of a Functional Peroxisome Type 1 Target by the Dynamic Import Receptor Pex5p. Molecular Cell, 2006, 24, 653-663.	9.7	156
3	Antagonistic Functions of MBP and CNP Establish Cytosolic Channels in CNS Myelin. Cell Reports, 2017, 18, 314-323.	6.4	145
4	Recognition of Mono-ADP-Ribosylated ARTD10 Substrates by ARTD8 Macrodomains. Structure, 2013, 21, 462-475.	3.3	107
5	Accurate Solution Structures of Proteins from X-ray Data and a Minimal Set of NMR Data: Calmodulinâ [^] Peptide Complexes As Examples. Journal of the American Chemical Society, 2009, 131, 5134-5144.	13.7	101
6	Molecular Basis of the Death-Associated Protein Kinase–Calcium/Calmodulin Regulator Complex. Science Signaling, 2010, 3, ra6.	3.6	94
7	The Catalytic Cycle of Biosynthetic Thiolase: A Conformational Journey of an Acetyl Group through Four Binding Modes and Two Oxyanion Holes‡. Biochemistry, 2002, 41, 15543-15556.	2.5	74
8	Myelinâ€specific proteins: A structurally diverse group of membraneâ€interacting molecules. BioFactors, 2013, 39, 233-241.	5.4	70
9	The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids, 2014, 46, 2295-2304.	2.7	65
10	The structure of human collapsin response mediator protein 2, a regulator of axonal growth. Journal of Neurochemistry, 2007, 101, 906-917.	3.9	63
11	Structural properties of proteins specific to the myelin sheath. Amino Acids, 2008, 34, 175-185.	2.7	63
12	Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Scientific Reports, 2017, 7, 4974.	3.3	63
13	High Resolution Crystal Structures of Human Cytosolic Thiolase (CT): A Comparison of the Active Sites of Human CT, Bacterial Thiolase, and Bacterial KAS I. Journal of Molecular Biology, 2005, 347, 189-201.	4.2	62
14	Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. Journal of Alzheimer's Disease, 2016, 53, 1-14.	2.6	62
15	A role of peripheral myelin protein 2 in lipid homeostasis of myelinating schwann cells. Glia, 2014, 62, 1502-1512.	4.9	61
16	Structural Basis for Parasite-Specific Functions of the Divergent Profilin of Plasmodium falciparum. Structure, 2008, 16, 1638-1648.	3.3	60
17	High-resolution Structural Analysis of Mammalian Profilin 2a Complex Formation with Two Physiological Ligands: The Formin Homology 1 Domain of mDia1 and the Proline-rich Domain of VASP. Journal of Molecular Biology, 2008, 375, 270-290.	4.2	60
18	The Thiolase Reaction Mechanism: The Importance of Asn316 and His348 for Stabilizing the Enolate Intermediate of the Claisen Condensation. Biochemistry, 2009, 48, 11011-11025.	2.5	60

#	Article	IF	CITATIONS
19	Structural and Functional Characterization of Human Peripheral Nervous System Myelin Protein P2. PLoS ONE, 2010, 5, e10300.	2.5	57
20	Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids, 2022, 54, 99-109.	2.7	57
21	Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009743.	4.7	55
22	The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function. Neuroscience Bulletin, 2014, 30, 956-966.	2.9	52
23	XDSi: a graphical interface for the data processing programXDS. Journal of Applied Crystallography, 2004, 37, 347-348.	4.5	48
24	Crystal Structure of Human Inosine Triphosphatase. Journal of Biological Chemistry, 2007, 282, 3182-3187.	3.4	48
25	Myelin Basic Protein and Myelin Protein 2 Act Synergistically to Cause Stacking of Lipid Bilayers. Biochemistry, 2010, 49, 3456-3463.	2.5	46
26	A structural insight into lead neurotoxicity and calmodulin activation by heavy metals. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 653-656.	0.7	45
27	Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure. BMC Structural Biology, 2008, 8, 10.	2.3	43
28	Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule. Amino Acids, 2010, 39, 59-71.	2.7	43
29	Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 165-176.	2.5	41
30	Molecular structure and function of myelin protein PO in membrane stacking. Scientific Reports, 2019, 9, 642.	3.3	41
31	Charge Isomers of Myelin Basic Protein: Structure and Interactions with Membranes, Nucleotide Analogues, and Calmodulin. PLoS ONE, 2011, 6, e19915.	2.5	38
32	Structure and Function of the Myelin Proteins: Current Status and Perspectives in Relation to Multiple Sclerosis. Current Medicinal Chemistry, 2005, 12, 1569-1587.	2.4	37
33	Domain Swapping and Different Oligomeric States for the Complex Between Calmodulin and the Calmodulin-Binding Domain of Calcineurin A. PLoS ONE, 2009, 4, e5402.	2.5	37
34	Crystal and solution structure, stability and postâ€translational modifications of collapsin response mediator protein 2. FEBS Journal, 2008, 275, 4583-4596.	4.7	35
35	Cofactor mobility determines reaction outcome in the IMPDH and GMPR ($\hat{l}^2-\hat{l}_\pm$)8 barrel enzymes. Nature Chemical Biology, 2011, 7, 950-958.	8.0	35
36	Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering. Soft Matter, 2014, 10, 519-529.	2.7	34

3

#	Article	IF	CITATIONS
37	Structure of the synthetase domain of human CTP synthetase, a target for anticancer therapy. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 613-617.	0.7	33
38	Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Scientific Reports, 2017, 7, 6510.	3.3	33
39	The small myelin-associated glycoprotein binds to tubulin and microtubules. Molecular Brain Research, 2001, 87, 22-30.	2.3	31
40	Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 619-624.	3.8	31
41	Myelin 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase: Active-Site Ligand Binding and Molecular Conformation. PLoS ONE, 2012, 7, e32336.	2.5	31
42	Juxtanodin is an intrinsically disordered F-actin-binding protein. Scientific Reports, 2012, 2, 899.	3.3	30
43	Periaxin and AHNAK Nucleoprotein 2 Form Intertwined Homodimers through Domain Swapping. Journal of Biological Chemistry, 2014, 289, 14121-14131.	3.4	30
44	DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Research, 2014, 42, 2308-2319.	14.5	30
45	CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency. Human Molecular Genetics, 2018, 27, 706-715.	2.9	30
46	Testis-expressed profilins 3 and 4 show distinct functional characteristics and localize in the acroplaxome-manchette complex in spermatids. BMC Cell Biology, 2009, 10, 34.	3.0	29
47	The Structural Motifs for Substrate Binding and Dimerization of the α Subunit of Collagen Prolyl 4-Hydroxylase. Structure, 2013, 21, 2107-2118.	3.3	29
48	Structural basis for <scp>PDZ</scp> domain interactions in the postâ€synaptic density scaffolding protein Shank3. Journal of Neurochemistry, 2018, 145, 449-463.	3.9	29
49	Structure of the Dimeric Autoinhibited Conformation of DAPK2, a Pro-Apoptotic Protein Kinase. Journal of Molecular Biology, 2011, 409, 369-383.	4.2	28
50	Structural and functional evolution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Brain Research, 2016, 1641, 64-78.	2.2	27
51	GADL1 is a multifunctional decarboxylase with tissue-specific roles in \hat{l}^2 -alanine and carnosine production. Science Advances, 2020, 6, eabb3713.	10.3	27
52	$\rm S100\hat{l}^2$ inhibits the phosphorylation of the L-MAG cytoplasmic domain by PKA. Molecular Brain Research, 2000, 76, 407-410.	2.3	26
53	Collapsin response mediator protein-2 is a calmodulin-binding protein. Cellular and Molecular Life Sciences, 2009, 66, 526-536.	5.4	26
54	Determinants of ligand binding and catalytic activity in the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Scientific Reports, 2015, 5, 16520.	3.3	26

#	Article	IF	CITATIONS
55	Structure of monomeric fullâ€length <scp>ARC</scp> sheds light on molecular flexibility, protein interactions, and functional modalities. Journal of Neurochemistry, 2018, 147, 323-343.	3.9	26
56	Arc selfâ€association and formation of virusâ€like capsids are mediated by an Nâ€terminal helical coil motif. FEBS Journal, 2021, 288, 2930-2955.	4.7	25
57	Calcium-Dependent Interaction Between the Large Myelin-Associated Glycoprotein and S100β. Journal of Neurochemistry, 2002, 73, 1724-1732.	3.9	24
58	Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme. Scientific Reports, 2016, 6, 30390.	3.3	24
59	Highâ€affinity heterotetramer formation between the large myelinâ€associated glycoprotein and the dynein light chain <scp>DYNLL</scp> 1. Journal of Neurochemistry, 2018, 147, 764-783.	3.9	24
60	A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC Structural Biology, 2007, 7, 24.	2.3	23
61	The Lasso Segment Is Required for Functional Dimerization of the Plasmodium Formin 1 FH2 Domain. PLoS ONE, 2012, 7, e33586.	2.5	23
62	Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids, 2017, 49, 747-759.	2.7	22
63	Dynamic properties of a reconstituted myelin sheath. Spectroscopy, 2010, 24, 585-592.	0.8	21
64	Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites. Structure, 2016, 24, 851-861.	3.3	21
65	Lipid Membrane Association of Myelin Proteins and Peptide Segments Studied by Oriented and Synchrotron Radiation Circular Dichroism Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 14983-14993.	2.6	20
66	The quaternary structure of human tyrosine hydroxylase: effects of dystoniaâ€associated missense variants on oligomeric state and enzyme activity. Journal of Neurochemistry, 2019, 148, 291-306.	3.9	20
67	Expression, purification, and initial characterization of different domains of recombinant mouse 2',3'-cyclic nucleotide 3'-phosphodiesterase, an enigmatic enzyme from the myelin sheath. BMC Research Notes, 2010, 3, 12.	1.4	19
68	A neonatalâ€onset succinylâ€CoA:3â€ketoacid CoA transferase (SCOT)â€deficient patient with T435N and c.658â€666dupAACGTGATT p.N220_l222dup mutations in the <i>OXCT1</i> gene. Journal of Inherited Metabolic Disease, 2010, 33, 307-313.	3.6	19
69	The Olfactomedin Domain from Gliomedin Is a \hat{I}^2 -Propeller with Unique Structural Properties. Journal of Biological Chemistry, 2015, 290, 3612-3621.	3.4	19
70	Structure and dynamics of a human myelin protein P2 portal region mutant indicate opening of the \hat{l}^2 barrel in fatty acid binding proteins. BMC Structural Biology, 2018, 18, 8.	2.3	19
71	Shanks — multidomain molecular scaffolds of the postsynaptic density. Current Opinion in Structural Biology, 2019, 54, 122-128.	5.7	19
72	Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells, 2020, 9, 470.	4.1	19

#	Article	IF	CITATIONS
73	The Expression of Recombinant Large Myelin-Associated Glycoprotein Cytoplasmic Domain and the Purification of Native Myelin-Associated Glycoprotein from Rat Brain and Peripheral Nerve. Protein Expression and Purification, 1999, 15, 349-361.	1.3	18
74	The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioesterâ€dependent enzyme. FEBS Journal, 2008, 275, 6136-6148.	4.7	18
75	The Nâ \in terminal domain of the myelin enzyme 2 â \in 2, 3 â \in 2â \in cyclic nucleotide 3 â \in 2â \in phosphodiesterase: direct m interaction with the calcium sensor calmodulin. Journal of Neurochemistry, 2012, 123, 515-524.	olecular	17
76	Assembly of the elongated collagen prolyl 4-hydroxylase $\hat{l}\pm2\hat{l}^2$ 2 heterotetramer around a central $\hat{l}\pm2$ dimer. Biochemical Journal, 2017, 474, 751-769.	3.7	17
77	Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering—A Comparison between Wild-Type Protein and a Hinge Mutant. PLoS ONE, 2015, 10, e0128954.	2.5	17
78	Conformations of peptides derived from myelin-specific proteins in membrane-mimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids, 2012, 42, 1467-1474.	2.7	16
79	Crystallographic Analysis of the Reaction Cycle of 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase, a Unique Member of the 2H Phosphoesterase Family. Journal of Molecular Biology, 2013, 425, 4307-4322.	4.2	16
80	Structure of an unconventional SH3 domain from the postsynaptic density protein Shank3 at ultrahigh resolution. Biochemical and Biophysical Research Communications, 2017, 490, 806-812.	2.1	16
81	Crystallization of the proline-rich-peptide binding domain of human type I collagen prolyl 4-hydroxylase. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 940-942.	2.5	15
82	Human Δ ³ ,Δ ² â€enoylâ€CoA isomerase, type 2: a structural enzymology study on the catalytic role of its <scp>ACBP</scp> domain and helixâ€10. FEBS Journal, 2015, 282, 746-768.	4.7	15
83	How Does Protein Zero Assemble Compact Myelin?. Cells, 2020, 9, 1832.	4.1	15
84	Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. Journal of Biological Chemistry, 2020, 295, 8692-8705.	3.4	15
85	Complex formation between calmodulin and a peptide from the intracellular loop of the gap junction protein connexin43: Molecular conformation and energetics of binding. Biophysical Chemistry, 2009, 144, 130-135.	2.8	14
86	Interactions of calmodulin with death-associated protein kinase peptides: experimental and modeling studies. Journal of Biomolecular Structure and Dynamics, 2012, 30, 45-61.	3.5	14
87	Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 24-30.	2.5	14
88	Sister Chromatid Cohesion Establishment Factor ESCO1 Operates by Substrate-Assisted Catalysis. Structure, 2016, 24, 789-796.	3.3	14
89	Crystallization and preliminary X-ray diffraction studies of an α-methylacyl-CoA racemase fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 353-355.	2.5	13
90	Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease. Amino Acids, 2019, 51, 151-174.	2.7	13

#	Article	IF	Citations
91	Crystal Structure of Non-Fused Glutathione S-Transferase from Schistosoma 709 japonicum in Complex with Glutathione. Protein and Peptide Letters, 2005, 12, 709-712.	0.9	12
92	Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Molecular Genetics and Metabolism, 2007, 92, 216-221.	1.1	12
93	Production and crystallization of a panel of structure-based mutants of the human myelin peripheral membrane protein P2. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1359-1362.	0.7	12
94	Human Adenosine A2A Receptor Binds Calmodulin with High Affinity in a Calcium-Dependent Manner. Biophysical Journal, 2015, 108, 903-917.	0.5	12
95	Direct Binding of the Flexible C-Terminal Segment of Periaxin to \hat{l}^24 Integrin Suggests a Molecular Basis for CMT4F. Frontiers in Molecular Neuroscience, 2019, 12, 84.	2.9	12
96	Structural properties and peptide ligand binding of the capsid homology domains of human Arc. Biochemistry and Biophysics Reports, 2021, 26, 100975.	1.3	12
97	Production, crystallization and neutron diffraction of fully deuterated human myelin peripheral membrane protein P2. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1391-1395.	0.8	11
98	Neuropathy-related mutations alter the membrane binding properties of the human myelin protein PO cytoplasmic tail. PLoS ONE, 2019, 14, e0216833.	2.5	11
99	Ionic strength and calcium regulate membrane interactions of myelin basic protein and the cytoplasmic domain of myelin protein zero. Biochemical and Biophysical Research Communications, 2019, 511, 7-12.	2.1	11
100	Structure of the Complete Dimeric Human GDAP1 Core Domain Provides Insights into Ligand Binding and Clustering of Disease Mutations. Frontiers in Molecular Biosciences, 2020, 7, 631232.	3.5	11
101	Structures of the hydrolase domain of human 10-formyltetrahydrofolate dehydrogenase and its complex with a substrate analogue. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1294-1299.	2.5	10
102	Structure of the ALS Mutation Target Annexin A11 Reveals a Stabilising N-Terminal Segment. Biomolecules, 2020, 10, 660.	4.0	10
103	Human myelin protein P2: from crystallography to timeâ€lapse membrane imaging and neuropathyâ€associated variants. FEBS Journal, 2021, 288, 6716-6735.	4.7	10
104	Crystal and solution structure of NDRG1, a membraneâ€binding protein linked to myelination and tumour suppression. FEBS Journal, 2021, 288, 3507-3529.	4.7	10
105	Expression of the amino acid dimorphism in the small myelin-associated glycoprotein cytoplasmic domain in rat peripheral nerves during postnatal development. Molecular Brain Research, 1998, 54, 252-261.	2.3	9
106	Structure, modifications and ligand-binding properties of rat profilin 2a. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 303-311.	2.5	9
107	Effects of Gigapascal Level Pressure on Protein Structure and Function. Journal of Physical Chemistry B, 2012, 116, 1100-1110.	2.6	9
108	Two independently folding units of Plasmodium profilin suggest evolution via gene fusion. Cellular and Molecular Life Sciences, 2015, 72, 4193-4203.	5.4	9

#	Article	IF	CITATIONS
109	Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	9
110	Human myelin proteolipid protein structure and lipid bilayer stacking. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	9
111	The current status of structural studies on proteins of the myelin sheath (Review). International Journal of Molecular Medicine, 2001, 8, 475.	4.0	8
112	Purification of recombinant growth hormone by clear native gels for conformational analyses: preservation of conformation and receptor binding. Amino Acids, 2010, 39, 859-869.	2.7	8
113	The N-terminal cytoplasmic domain of neuregulin 1 type III is intrinsically disordered. Amino Acids, 2015, 47, 1567-1577.	2.7	8
114	Structure of the mouse acidic amino acid decarboxylase GADL1. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 65-73.	0.8	8
115	The N-terminal domain of unknown function (DUF959) in collagen XVIII is intrinsically disordered and highly O-glycosylated. Biochemical Journal, 2018, 475, 3577-3593.	3.7	8
116	Raptor-Mediated Proteasomal Degradation of Deamidated 4E-BP2 Regulates Postnatal Neuronal Translation and NF-κB Activity. Cell Reports, 2019, 29, 3620-3635.e7.	6.4	8
117	Crystal and solution structures reveal oligomerization of individual capsid homology domains of Drosophila Arc. PLoS ONE, 2021, 16, e0251459.	2.5	7
118	Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase. PLoS ONE, 2017, 12, e0170355.	2.5	6
119	Development and Validation of Arc Nanobodies: New Tools for Probing Arc Dynamics and Function. Neurochemical Research, 2022, 47, 2656-2666.	3.3	6
120	Structural insights into Charcot–Marie–Tooth diseaseâ€linked mutations in human GDAP1. FEBS Open Bio, 2022, 12, 1306-1324.	2.3	6
121	High-affinity anti-Arc nanobodies provide tools for structural and functional studies. PLoS ONE, 2022, 17, e0269281.	2.5	5
122	Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2. EPJ Web of Conferences, 2015, 83, 02010.	0.3	4
123	Calcium modulates calmodulin/ \hat{l} ±-actinin 1 interaction with and agonist-dependent internalization of the adenosine A 2A receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 674-686.	4.1	4
124	A Quasielastic Neutron Scattering Investigation on the Molecular Self-Dynamics of Human Myelin Protein P2. Journal of Physical Chemistry B, 2019, 123, 8178-8185.	2.6	4
125	Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites. Molecules, 2019, 24, 3044.	3.8	4
126	Small-angle X-ray scattering for the proteomics community: current overview and future potential. Expert Review of Proteomics, 2021, 18, 415-422.	3.0	4

#	Article	IF	CITATIONS
127	Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. Journal of Biological Chemistry, 2022, 298, 101803.	3.4	4
128	Functional homo- and heterodimeric actin capping proteins from the malaria parasite. Biochemical and Biophysical Research Communications, 2020, 525, 681-686.	2.1	3
129	Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. Journal of Structural Biology, 2021, 213, 107674.	2.8	3
130	Estimation of total ribonucleic acid quantity from dilute samples by nondenaturing electrophoresis and silver staining. Electrophoresis, 2000, 21, 545-547.	2.4	2
131	Preliminary crystallographic analysis of the N-terminal PDZ-like domain of periaxin, an abundant peripheral nerve protein linked to human neuropathies. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 804-808.	0.7	2
132	Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the extracellular olfactomedin domain of gliomedin. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1536-1539.	0.8	2
133	SUMO on CRMPs - wrestling for pain?. Channels, 2017, 11, 265-267.	2.8	2
134	Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Cellular and Molecular Life Sciences, 2022, 79, 125.	5.4	2
135	Purification, crystallization and preliminary X-ray crystallographic analysis of MIL, a glycosylated jacalin-related lectin from mulberry (Morus indica) latex. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 608-612.	0.7	1
136	Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase. BMC Biochemistry, 2017, 18, 7.	4.4	1
137	Exome sequencing in a child with neurodevelopmental disorder and epilepsy: Variant analysis of the <scp>AHNAK2</scp> gene. Molecular Genetics & Enomic Medicine, 0, , .	1.2	1
138	Biophysical studies on the structure and function of molecules from the vertebrate myelin sheath. Proceedings of SPIE, 2010, , .	0.8	0
139	Structure and Function of the Peripheral Membrane Protein P2 from Human Nervous System Myelin. Biophysical Journal, 2012, 102, 608a.	0.5	0
140	Membrane Interactions, Intrinsic Disorder, and Unknown Functions of Myelin Proteins. Biophysical Journal, 2013, 104, 548a.	0.5	0
141	Recombinant production, crystallization and preliminary structural characterization of Schistosoma japonicumprofilin. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1264-1267.	0.7	0
142	The Influence of the Myelin Basic Protein C8 Mutant on the Dynamics of Myelin Membranes. Journal of the Physical Society of Japan, 2013, 82, SA018.	1.6	0
143	Crystallographic anomalous diffraction data for the experimental phasing of two myelin proteins, gliomedin and periaxin. Data in Brief, 2017, 11, 552-556.	1.0	0
144	Flexibility of the Myelin Scaffolding Protein Periaxin. Biophysical Journal, 2018, 114, 407a.	0.5	0

#	Article	IF	CITATIONS
145	Crystallographic home-source X-ray data for the atomic-resolution experimental phasing of the Shank3 SH3 domain structure from pseudomerohedrally twinned crystals. Data in Brief, 2018, 20, 1912-1916.	1.0	0
146	Stability and flexibility of full-length human oligodendrocytic QKI6. BMC Research Notes, 2019, 12, 609.	1.4	0