
Frank Oliver Glöckner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2012, 41, D590-D596.	6.5	21,425
2	SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 2012, 28, 1823-1829.	1.8	2,826
3	The SILVA and "All-species Living Tree Project (LTP)―taxonomic frameworks. Nucleic Acids Research, 2014, 42, D643-D648.	6.5	2,667
4	The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47, D259-D264.	6.5	2,072
5	JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 2016, 32, 929-931.	1.8	2,023
6	Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 2014, 12, 635-645.	13.6	2,000
7	The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Systematic and Applied Microbiology, 2008, 31, 241-250.	1.2	884
8	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
9	25 years of serving the community with ribosomal RNA gene reference databases and tools. Journal of Biotechnology, 2017, 261, 169-176.	1.9	679
10	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	9.4	608
11	Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. ELife, 2016, 5, e11888.	2.8	414
12	Genomics in marine monitoring: New opportunities for assessing marine health status. Marine Pollution Bulletin, 2013, 74, 19-31.	2.3	196
13	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	2.6	190
14	The ocean sampling day consortium. GigaScience, 2015, 4, 27.	3.3	185
15	Niches of two polysaccharide-degrading <i>Polaribacter</i> isolates from the North Sea during a spring diatom bloom. ISME Journal, 2015, 9, 1410-1422.	4.4	182
16	Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algaeâ€associated bacterium <i>Zobellia galactanivorans</i> Dsij ^T . Environmental Microbiology, 2016, 18, 4610-4627.	1.8	131
17	<i>Candidatus</i> Desulfofervidus auxilii, a hydrogenotrophic sulfateâ€reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology, 2016, 18, 3073-3091.	1.8	115
18	Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Research, 2016, 44, 5022-5033.	6.5	97

Frank Oliver GlĶckner

#	Article	IF	CITATIONS
19	Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Marine Genomics, 2014, 18, 185-192.	0.4	84
20	A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiology, 2018, 18, 190.	1.3	84
21	<i>UniEuk</i> : Time to Speak a Common Language in Protistology!. Journal of Eukaryotic Microbiology, 2017, 64, 407-411.	0.8	74
22	Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1. ISME Journal, 2011, 5, 107-121.	4.4	62
23	Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data. PLoS ONE, 2015, 10, e0134377.	1.1	62
24	The founding charter of the Genomic Observatories Network. GigaScience, 2014, 3, 2.	3.3	51
25	A phylogenetic framework for the kingdom Fungi based on 18S rRNA gene sequences. Marine Genomics, 2017, 36, 33-39.	0.4	47
26	The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences. Bioinformatics, 2020, 36, 2636-2642.	1.8	47
27	Marine microbial genomics in Europe: current status and perspectives. Microbial Biotechnology, 2010, 3, 523-530.	2.0	28
28	On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
29	Genomic Standards Consortium Projects. Standards in Genomic Sciences, 2014, 9, 599-601.	1.5	26
30	Implementing FAIR data management within the German Network for Bioinformatics Infrastructure (de.NBI) exemplified by selected use cases. Briefings in Bioinformatics, 2021, 22, .	3.2	18
31	The North Sea goes viral: Occurrence and distribution of North Sea bacteriophages. Marine Genomics, 2018, 41, 31-41.	0.4	17
32	Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area. Marine Genomics, 2017, 32, 61-69.	0.4	15
33	Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics, 2019, 20, 453.	1.2	15
34	Metatranscriptome of marine bacterioplankton during winter time in the North Sea assessed by total RNA sequencing. Marine Genomics, 2015, 19, 45-46.	0.4	14
35	Meta-omics data and collection objects (MOD-CO): a conceptual schema and data model for processing sample data in meta-omics research. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	14
36	The SILVA Database Project: An ELIXIR core data resource for high-quality ribosomal RNA sequences. Biodiversity Information Science and Standards, 0, 3, .	0.0	11

#	Article	IF	CITATIONS
37	Genomic characterization of filamentous phage vB_Vpal_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Marine Genomics, 2020, 53, 100767.	0.4	10
38	Permanent draft genome of Rhodopirellula rubra SWK7. Marine Genomics, 2014, 13, 11-12.	0.4	6
39	MyOSD 2014: Evaluating Oceanographic Measurements Contributed by Citizen Scientists in Support of Ocean Sampling Day. Journal of Microbiology and Biology Education, 2016, 17, 163-171.	0.5	6
40	Permanent draft genome of Rhodopirellula sallentina SM41. Marine Genomics, 2014, 13, 17-18.	0.4	5
41	Permanent draft genomes of the Rhodopirellula maiorica strain SM1. Marine Genomics, 2014, 13, 19-20.	0.4	5
42	Permanent draft genomes of the two Rhodopirellula europaea strains 6C and SH398. Marine Genomics, 2014, 13, 15-16.	0.4	4
43	Permanent draft genomes of the three Rhodopirellula baltica strains SH28, SWK14 and WH47. Marine Genomics, 2014, 13, 13-14.	0.4	3
44	FAIR data in meta-omics research: Using the MOD-CO schema to describe structural and operational elements of workflows from field to publication. Biodiversity Information Science and Standards, 0, 3, .	0.0	3
45	The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Research, 2019, 8, 1877.	0.8	3
46	Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR. F1000Research, 0, 10, 1238.	0.8	3
47	FastaValidator: an open-source Java library to parse and validate FASTA formatted sequences. BMC Research Notes, 2014, 7, 365.	0.6	2
48	The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Research, 2019, 8, 1877.	0.8	1
49	NFDI4BioDiversity: Biodiversity, ecology and environmental data. Biodiversity Information Science and Standards, 0, 3, .	0.0	1
50	Mg-Traits pipeline: advancing functional trait-based approaches in metagenomics. ARPHA Conference Abstracts, 0, 4, .	0.0	0
51	Mainstreaming Molecular Biodiversity: A call for a unified and interoperable framework. Biodiversity Information Science and Standards, 0, 3, .	0.0	Ο