Yongming Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stressâ€Regulation Design of Lithium Alloy Electrode toward Stable Battery Cycling. Energy and Environmental Materials, 2023, 6, .	12.8	11
2	Implications of Na-ion solvation on Na anode–electrolyte interphase. Trends in Chemistry, 2022, 4, 48-59.	8.5	26
3	Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface. EcoMat, 2022, 4, .	11.9	23
4	Insights on "nitrate salt―in lithium anode for stabilized solid electrolyte interphase. , 2022, 4, 12-20.		22
5	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie, 2022, 134, .	2.0	13
6	Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Science Bulletin, 2022, 67, 716-724.	9.0	80
7	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	82
8	Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials, 2022, 46, 563-569.	18.0	28
9	Embedment of red phosphorus in anthracite matrix for stable battery anode. Rare Metals, 2022, 41, 2819-2825.	7.1	2
10	Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials, 2022, 49, 135-143.	18.0	23
11	Realizing High Utilization of High-Mass-Loading Sulfur Cathode via Electrode Nanopore Regulation. Nano Letters, 2022, 22, 5982-5989.	9.1	14
12	Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 2021, 35, 310-316.	18.0	26
13	A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm ^{–2} and 20 mAh cm ^{–2} . Journal of the American Chemical Society, 2021, 143, 3143-3152.	13.7	132
14	Roomâ€Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	19.5	114
15	Addressing the Low Solubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte by Composite Battery Anode Design. ACS Applied Materials & Interfaces, 2021, 13, 13354-13361.	8.0	23
16	Manipulating Oxidation of Silicon with Fresh Surface Enabling Stable Battery Anode. Nano Letters, 2021, 21, 3127-3133.	9.1	33
17	A Saltâ€inâ€Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials, 2021, 31, 2010602.	14.9	69
18	In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry, 2021, 64, 1417-1425.	8.2	28

#	Article	IF	CITATIONS
19	Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency Presodiation Reagents for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27057-27065.	8.0	17
20	Manipulating Redox Kinetics of Sulfur Species Using Mott–Schottky Electrocatalysts for Advanced Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 6656-6663.	9.1	145
21	Promises and Challenges of the Practical Implementation of Prelithiation in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101565.	19.5	112
22	Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chemical Engineering Journal, 2021, 420, 129642.	12.7	56
23	Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design. Journal of Energy Chemistry, 2021, 62, 477-484.	12.9	19
24	Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. ACS Energy Letters, 2021, 6, 320-328.	17.4	50
25	Doctorâ€Blade Casting Fabrication of Ultrathin Li Metal Electrode for Highâ€Energyâ€Density Batteries. Advanced Energy Materials, 2021, 11, 2102259.	19.5	40
26	Closely Compacted TiNb ₂ O ₇ -C Assembly for Fast-Charging Battery Anodes. ACS Applied Energy Materials, 2021, 4, 12319-12325.	5.1	3
27	Enhanced Chemical Immobilization and Catalytic Conversion of Polysulfide Intermediates Using Metallic Mo Nanoclusters for High-Performance Li–S Batteries. ACS Nano, 2020, 14, 1148-1157.	14.6	125
28	Metal/LiF/Li ₂ 0 Nanocomposite for Battery Cathode Prelithiation: Trade-off between Capacity and Stability. Nano Letters, 2020, 20, 546-552.	9.1	72
29	Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.	9.1	25
30	Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 57055-57063.	8.0	49
31	Conformal Prelithiation Nanoshell on LiCoO ₂ Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 2020, 20, 4558-4565.	9.1	92
32	Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020, 30, 250-259.	18.0	264
33	A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research, 2020, 13, 1383-1388.	10.4	13
34	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	12.8	246
35	Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials, 2020, 27, 205-211.	18.0	307
36	A Chemically Polished Zinc Metal Electrode with a Ridge-like Structure for Cycle-Stable Aqueous Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23028-23034.	8.0	65

#	Article	IF	CITATIONS
37	Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 2020, 13, 1122-1126.	10.4	19
38	A Simple Electrode‣evel Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1903795.	14.9	85
39	Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23, 261-268.	18.0	149
40	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advances, 2019, 5, eaau5655.	10.3	79
41	Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule, 2019, 3, 1080-1093.	24.0	168
42	Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 765-770.	7.1	39
43	Robust Pinhole-free Li ₃ N Solid Electrolyte Grown from Molten Lithium. ACS Central Science, 2018, 4, 97-104.	11.3	197
44	Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nature Communications, 2018, 9, 5289.	12.8	119
45	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9, 4480.	12.8	193
46	A Dualâ€Crosslinking Design for Resilient Lithiumâ€Ion Conductors. Advanced Materials, 2018, 30, e1804142.	21.0	128
47	Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2018, 2, 1857-1865.	24.0	132
48	Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy and Environmental Science, 2017, 10, 580-592.	30.8	421
49	Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3, e1601978.	10.3	245
50	Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science, 2017, 358, 506-510.	12.6	1,039
51	High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nature Energy, 2017, 2, 861-868.	39.5	372
52	Stretchable Lithiumâ€ion Batteries Enabled by Deviceâ€scaled Wavy Structure and Elasticâ€sticky Separator. Advanced Energy Materials, 2017, 7, 1701076.	19.5	158
53	Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments. Nano Letters, 2017, 17, 5171-5178.	9.1	88
54	Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Materials, 2017, 6, 119-124.	18.0	143

#	Article	IF	CITATIONS
55	Lithium Sulfide/Metal Nanocomposite as a Highâ€Capacity Cathode Prelithiation Material. Advanced Energy Materials, 2016, 6, 1600154.	19.5	87
56	Entrapment of Polysulfides by a Blackâ€Phosphorusâ€Modified Separator for Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9797-9803.	21.0	453
57	Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 2016, 45, 5605-5634.	38.1	2,008
58	Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1, .	39.5	1,388
59	High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy, 2016, 1, .	39.5	265
60	A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Selfâ€Healing Elastic Polymer. Advanced Materials, 2016, 28, 2455-2461.	21.0	197
61	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	21.0	247
62	Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Materials, 2016, 4, 130-136.	18.0	167
63	In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Nano Letters, 2016, 16, 1497-1501.	9.1	112
64	Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Research, 2015, 8, 1148-1158.	10.4	188
65	A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Central Science, 2015, 1, 449-455.	11.3	733
66	A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10, 980-985.	31.5	1,287
67	In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries. Nano Energy, 2015, 11, 579-586.	16.0	84
68	Flexible Asymmetric Microâ€6upercapacitors Based on Bi ₂ O ₃ and MnO ₂ Nanoflowers: Larger Areal Mass Promises Higher Energy Density. Advanced Energy Materials, 2015, 5, 1401882.	19.5	479
69	Electrospun Conformal Li ₄ Ti ₅ O ₁₂ /C Fibers for Highâ€Rate Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 611-616.	3.4	43
70	Insight into the Electrode Mechanism in Lithiumâ€Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Advanced Energy Materials, 2014, 4, 1301473.	19.5	418
71	A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries. Chemical Communications, 2014, 50, 1962.	4.1	47
72	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 2014, 5, 5017.	12.8	530

#	Article	IF	CITATIONS
73	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.	16.0	165
74	Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 4229.	3.3	131
75	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithiumâ€5torage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	3.3	83
76	Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.	14.9	770
77	Controlled Synthesis of Mesoporous MnO/C Networks by Microwave Irradiation and Their Enhanced Lithium-Storage Properties. ACS Applied Materials & amp; Interfaces, 2013, 5, 1997-2003.	8.0	162
78	Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. Journal of Materials Chemistry A, 2013, 1, 15053.	10.3	39
79	Self-assembly of hybrid Fe2Mo3O8–reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 4468.	10.3	40
80	Synthesis of Amorphous FeOOH/Reduced Graphene Oxide Composite by Infrared Irradiation and Its Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 10145-10150.	8.0	52
81	Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 13826.	6.7	119
82	Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 8916.	6.7	328
83	Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4910.	6.7	60
84	Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. Journal of Materials Chemistry, 2012, 22, 19190.	6.7	150
85	Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 20794-20799.	3.1	154
86	Ultrafine MoO ₂ nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 425-431.	6.7	175
87	Layer-by-layer assembled MoO2–graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4, 4707.	5.6	127
88	Hierarchical self-assembly of Mn2Mo3O8–graphene nanostructures and their enhanced lithium-storage properties. Journal of Materials Chemistry, 2011, 21, 17229.	6.7	50
89	Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.	30.8	245
90	Self-Assembled Hierarchical MoO ₂ /Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 2011, 5, 7100-7107.	14.6	611

#	Article	IF	CITATIONS
91	Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Physical Chemistry Chemical Physics, 2011, 13, 16735.	2.8	113
92	Large-scale synthesis of Ag1.8Mn8O16 nanorods and their electrochemical lithium-storage properties. Journal of Nanoparticle Research, 2011, 13, 3139-3148.	1.9	14