Solomon Tesfamariam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169031/publications.pdf

Version: 2024-02-01

160 papers 4,648 citations

34 h-index 60 g-index

164 all docs

164 docs citations

164 times ranked 3718 citing authors

#	Article	IF	CITATIONS
1	A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 2014, 10, 1176-1210.	3.7	286
2	Risk analysis for oil & Damp; gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis. Journal of Loss Prevention in the Process Industries, 2012, 25, 505-523.	3.3	234
3	Evaluating risk of water mains failure using a Bayesian belief network model. European Journal of Operational Research, 2015, 240, 220-234.	5.7	170
4	Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stochastic Environmental Research and Risk Assessment, 2009, 23, 75-91.	4.0	163
5	Performance indicators for small- and medium-sized water supply systems: a review. Environmental Reviews, 2014, 22, 1-40.	4.5	134
6	A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 2013, 59, 19-28.	3.8	133
7	Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Engineering Structures, 2017, 150, 599-621.	5.3	121
8	A fuzzy Bayesian belief network for safety assessment of oil and gas pipelines. Structure and Infrastructure Engineering, 2016, 12, 874-889.	3.7	113
9	Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian Belief Network model. Journal of Cleaner Production, 2018, 174, 1629-1641.	9.3	108
10	Risk analysis in a linguistic environment: A fuzzy evidential reasoning-based approach. Expert Systems With Applications, 2011, 38, 15438-15446.	7.6	105
11	Probability density functions based weights for ordered weighted averaging (OWA) operators: An example of water quality indices. European Journal of Operational Research, 2007, 182, 1350-1368.	5.7	104
12	Internal corrosion hazard assessment of oil & Dipelines using Bayesian belief network model. Journal of Loss Prevention in the Process Industries, 2016, 40, 479-495.	3.3	98
13	Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures. Applied Soft Computing Journal, 2019, 83, 105631.	7.2	92
14	Hysteresis behavior of bracket connection in cross-laminated-timber shear walls. Construction and Building Materials, 2013, 48, 980-991.	7.2	88
15	Earthquake induced damage classification for reinforced concrete buildings. Structural Safety, 2010, 32, 154-164.	5.3	75
16	Seismic fragilities for reinforced concrete buildings with consideration of irregularities. Structural Safety, 2012, 39, 1-13.	5.3	69
17	Risk-Based Seismic Evaluation of Reinforced Concrete Buildings. Earthquake Spectra, 2008, 24, 795-821.	3.1	68
18	Seismic Vulnerability Assessment of Reinforced Concrete Buildings Using Hierarchical Fuzzy Rule Base Modeling. Earthquake Spectra, 2010, 26, 235-256.	3.1	66

#	Article	IF	Citations
19	Decision Making Under Uncertainty—An Example for Seismic Risk Management. Risk Analysis, 2010, 30, 78-94.	2.7	65
20	Uncoupled axial, flexural, and circumferential pipeÂ-soil interaction analyses of partially supported jointed water mains. Canadian Geotechnical Journal, 2004, 41, 997-1010.	2.8	57
21	Seismic Vulnerability of Reinforced Concrete Frame with Unreinforced Masonry Infill Due to Main Shock–Aftershock Earthquake Sequences. Earthquake Spectra, 2015, 31, 1427-1449.	3.1	55
22	Buildings' seismic vulnerability assessment methods: a comparative study. Natural Hazards, 2012, 62, 405-424.	3.4	54
23	Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada. Structural Safety, 2015, 56, 39-51.	5. 3	54
24	Consequence-based framework for buried infrastructure systems: A Bayesian belief network model. Reliability Engineering and System Safety, 2018, 180, 290-301.	8.9	53
25	Possibilistic approach for consideration of uncertainties to estimate structural capacity of ageing cast iron water mains. Canadian Journal of Civil Engineering, 2006, 33, 1050-1064.	1.3	51
26	Seismic Vulnerability Assessment of Hybrid Steel-Timber Structure: Steel Moment-Resisting Frames with CLT Infill. Journal of Earthquake Engineering, 2014, 18, 929-944.	2.5	51
27	Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction. Structural Control and Health Monitoring, 2019, 26, e2437.	4.0	50
28	Integrating indicators for performance assessment of small water utilities using ordered weighted averaging (OWA) operators. Expert Systems With Applications, 2010, 37, 4881-4891.	7.6	48
29	Downtime estimation of building structures using fuzzy logic. International Journal of Disaster Risk Reduction, 2019, 34, 196-208.	3.9	48
30	Inspection and maintenance of oil & Dil &	3.7	46
31	Integrating failure prediction models for water mains: Bayesian belief network based data fusion. Knowledge-Based Systems, 2015, 85, 159-169.	7.1	41
32	Models for Seismic Vulnerability Analysis of Power Networks: Comparative Assessment. Computer-Aided Civil and Infrastructure Engineering, 2014, 29, 590-607.	9.8	40
33	Predicting water main failures using Bayesian model averaging and survival modelling approach. Reliability Engineering and System Safety, 2015, 142, 498-514.	8.9	40
34	Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD). International Journal of Sustainable Built Environment, 2017, 6, 16-29.	3.2	38
35	State-of-the-art review of displacement-based seismic design of timber buildings. Construction and Building Materials, 2018, 191, 481-497.	7.2	38
36	Condition assessment for bridges: a hierarchical evidential reasoning (HER) framework. Structure and Infrastructure Engineering, 2013, 9, 648-666.	3.7	34

#	Article	IF	CITATIONS
37	Loss estimation for nonâ€ductile reinforced concrete building in Victoria, British Columbia, Canada: effects of megaâ€thrust ⟨i⟩M⟨ i⟩⟨sub⟩w⟨ sub⟩9â€class subduction earthquakes and aftershocks. Earthquake Engineering and Structural Dynamics, 2015, 44, 2303-2320.	4.4	34
38	Selecting performance indicators for small and medium sized water utilities: Multi-criteria analysis using <i>ELECTRE </i> /i>method. Urban Water Journal, 2015, 12, 305-327.	2.1	34
39	Seismic performance-based design and risk analysis of thermal power plant building with consideration of vertical and mass irregularities. Engineering Structures, 2018, 164, 141-154.	5.3	31
40	Experimental assessment of a novel steel tube connector in cross-laminated timber. Engineering Structures, 2018, 177, 283-290.	5.3	30
41	Sustainability Evaluation of Surface Water Quality Management Options in Developing Countries: Multicriteria Analysis Using Fuzzy UTASTAR Method. Water Resources Management, 2015, 29, 2987-3013.	3.9	29
42	Handling incomplete and missing data in water network database using imputation methods. Sustainable and Resilient Infrastructure, 2020, 5, 365-377.	2.8	28
43	Developing a road performance index using a Bayesian belief network model. Journal of the Franklin Institute, 2011, 348, 2539-2555.	3.4	27
44	Configuration optimization of dampers for adjacent buildings under seismic excitations. Engineering Optimization, 2012, 44, 1491-1509.	2.6	27
45	Risk-Based Framework for Improving Customer Satisfaction through System Reliability in Small-Sized to Medium-Sized Water Utilities. Journal of Management in Engineering - ASCE, 2016, 32, .	4.8	27
46	Sewer Structural Condition Prediction Integrating Bayesian Model Averaging with Logistic Regression. Journal of Performance of Constructed Facilities, 2018, 32, .	2.0	27
47	Statistical Inference of Sewer Pipe Deterioration Using Bayesian Geoadditive Regression Model. Journal of Infrastructure Systems, 2019, 25, .	1.8	27
48	Optimal design of reinforced concrete beams: A review. Computers and Concrete, 2014, 13, 457-482.	0.7	27
49	Developing environmental indices using fuzzy numbers ordered weighted averaging (FN-OWA) operators. Stochastic Environmental Research and Risk Assessment, 2008, 22, 495-505.	4.0	26
50	Effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of RC framed buildings. Earthquake Engineering and Structural Dynamics, 2014, 43, 205-223.	4.4	26
51	Predicting water main failures: A Bayesian model updating approach. Knowledge-Based Systems, 2016, 110, 144-156.	7.1	25
52	Multi-dimensional damage measure for seismic reliability analysis. Structural Safety, 2019, 78, 1-11.	5.3	25
53	Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model. Reliability Engineering and System Safety, 2021, 208, 107320.	8.9	25
54	Prediction of lateral spread displacement: data-driven approaches. Bulletin of Earthquake Engineering, 2012, 10, 1431-1454.	4.1	24

#	Article	IF	CITATIONS
55	Water mains renewal planning framework for small to medium sized water utilities: a life cycle cost analysis approach. Urban Water Journal, 2017, 14, 493-501.	2.1	23
56	Mapping safety culture attributes with integrity management program to achieve assessment goals: A framework for oil and gas pipelines industry. Journal of Safety Research, 2019, 68, 59-69.	3.6	23
57	Reliability-based optimization of nonlinear energy sink with negative stiffness and sliding friction. Journal of Sound and Vibration, 2020, 485, 115560.	3.9	23
58	Integrating Bayesian Linear Regression with Ordered Weighted Averaging: Uncertainty Analysis for Predicting Water Main Failures. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2015, 1, .	1.7	22
59	Direct Displacement-Based Design of a Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross-Laminated Timber Infill Walls. Earthquake Spectra, 2016, 32, 1565-1585.	3.1	22
60	Probabilistic serviceability-performance assessment of tall mass-timber buildings subjected to stochastic wind loads: Part I - structural design and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 181, 85-103.	3.9	21
61	Subset simulation based approach for space-time-dependent system reliability analysis of corroding pipelines. Structural Safety, 2021, 90, 102073.	5. 3	21
62	Probabilistic risk analysis using ordered weighted averaging (OWA) operators. Stochastic Environmental Research and Risk Assessment, 2008, 22, 1-15.	4.0	20
63	Seismic Performance Evaluation Framework Considering Maximum and Residual Inter-Story Drift Ratios: Application to Non-Code Conforming Reinforced Concrete Buildings in Victoria, BC, Canada. Frontiers in Built Environment, 2015, 1, .	2.3	20
64	Risk assessment of oil and gas pipelines with consideration of induced seismicity and internal corrosion. Journal of Loss Prevention in the Process Industries, 2017, 47, 85-94.	3.3	20
65	Robust design optimization for SMA based nonlinear energy sink with negative stiffness and friction. Soil Dynamics and Earthquake Engineering, 2021, 140, 106466.	3.8	20
66	Consequence-based framework for electric power providers using Bayesian belief network. International Journal of Electrical Power and Energy Systems, 2015, 64, 233-241.	5 . 5	19
67	A decision support tool for water mains renewal for small to medium sized utilities: a risk index approach. Journal of Water Supply: Research and Technology - AQUA, 2014, 63, 281-302.	1.4	18
68	Bayesian model averaging for the prediction of water main failure for small to large Canadian municipalities. Canadian Journal of Civil Engineering, 2016, 43, 233-240.	1.3	18
69	External corrosion pitting depth prediction using Bayesian spectral analysis on bare oil and gas pipelines. International Journal of Pressure Vessels and Piping, 2020, 188, 104224.	2.6	18
70	Sustainable funding strategies for stormwater infrastructure management: A system dynamics model. Sustainable Cities and Society, 2021, 64, 102485.	10.4	18
71	Seismic fragility of reinforced concrete girder bridges using Bayesian belief network. Earthquake Engineering and Structural Dynamics, 2016, 45, 29-44.	4.4	17
72	Earthquake-related Natech risk assessment using a Bayesian belief network model. Structure and Infrastructure Engineering, 2019, 15, 725-739.	3.7	17

#	Article	lF	CITATIONS
73	Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method. Earthquake and Structures, 2012, 3, 695-717.	1.0	17
74	Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings. Earthquake Engineering and Engineering Vibration, 2012, 11, 331-342.	2.3	16
7 5	Performance of semirigid timber frame with Lagscrewbolt connections: experimental, analytical, and numerical model results. International Journal of Advanced Structural Engineering, 2015, 7, 387-403.	1.3	16
76	Graph-Theoretic Surrogate Measure to Analyze Reliability of Water Distribution System Using Bayesian Belief Network–Based Data Fusion Technique. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	16
77	Management of Civil Infrastructure Systems: QFD-Based Approach. Journal of Infrastructure Systems, 2014, 20, .	1.8	15
78	Prediction of Pipe Failure by Considering Time-Dependent Factors: Dynamic Bayesian Belief Network Model. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3, .	1.7	15
79	Performance evaluation of employees using Bayesian belief network model. International Journal of Management Science and Engineering Management, 2018, 13, 91-99.	3.1	15
80	Optimization of SMA based damped outrigger structure under uncertainty. Engineering Structures, 2020, 222, 111074.	5.3	15
81	Quantifying restoration time of pipelines after earthquakes: Comparison of Bayesian belief networks and fuzzy models. International Journal of Disaster Risk Reduction, 2021, 64, 102491.	3.9	15
82	Performanceâ€based design of tallâ€coupled crossâ€laminated timber wall building. Earthquake Engineering and Structural Dynamics, 2022, 51, 1677-1696.	4.4	15
83	Seismic risk assessment of high-voltage transformers using Bayesian belief networks. Structure and Infrastructure Engineering, 2015, 11, 929-943.	3.7	14
84	Optimal probabilityâ€based partial mass isolation of elevated coal scuttle in thermal power plant building. Structural Design of Tall and Special Buildings, 2018, 27, e1477.	1.9	14
85	Structural performance of multi-story mass-timber buildings under tornado-like wind field. Engineering Structures, 2018, 177, 519-539.	5.3	14
86	Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model. Soil Dynamics and Earthquake Engineering, 2020, 135, 106180.	3.8	14
87	Quantifying the Ductility-Related Force Modification Factor for 10-Story Timber–RC Hybrid Building Using FEMA P695 Procedure and Considering the 2015 NBC Seismic Hazard. Journal of Structural Engineering, 2021, 147, .	3.4	14
88	Seismic performance assessment of steel moment-resisting frames with self-centering viscous-hysteretic devices. Journal of Constructional Steel Research, 2021, 187, 106987.	3.9	14
89	Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: A probability bounds approach. Science of the Total Environment, 2014, 490, 182-190.	8.0	13
90	A hierarchy-based approach to seismic vulnerability assessment of bulk power systems. Structure and Infrastructure Engineering, 2015, 11, 1352-1368.	3.7	13

#	Article	IF	CITATIONS
91	Timber–Reinforced Concrete Core Hybrid System: Shake Table Experimental Test. Journal of Structural Engineering, 2017, 143, .	3.4	13
92	Probabilistic serviceability-performance assessment of tall mass-timber buildings subjected to stochastic wind loads: Part II - structural reliability analysis. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 181, 112-125.	3.9	13
93	Displacement-Based Design of Hybrid RC–Timber Structure: Seismic Risk Assessment. Journal of Structural Engineering, 2019, 145, .	3.4	13
94	Prediction of lateral spreading displacement using conditional Generative Adversarial Network (cGAN). Soil Dynamics and Earthquake Engineering, 2022, 156, 107214.	3.8	13
95	Special Issue on Performance of Timber and Hybrid Structures. Journal of Performance of Constructed Facilities, 2014, 28, .	2.0	12
96	Considering Soil Parameters in Prediction of Remaining Service Life of Metallic Pipes: Bayesian Belief Network Model. Journal of Pipeline Systems Engineering and Practice, 2016, 7, .	1.6	12
97	Environmental risk assessment of acid rock drainage under uncertainty: The probability bounds and PHREEQC approach. Journal of Hazardous Materials, 2016, 301, 187-196.	12.4	12
98	Seismic Retrofit Screening of Existing Highway Bridges With Consideration of Chloride-Induced Deterioration: A Bayesian Belief Network Model. Frontiers in Built Environment, 2018, 4, .	2.3	12
99	Cyclic behavior of bracket connections for cross-laminated timber (CLT): Assessment and comparison of experimental and numerical models studies. Journal of Building Engineering, 2021, 39, 102197.	3.4	12
100	A model for earthquake risk management based on the life-cycle performance of structures. Civil Engineering and Environmental Systems, 2011, 28, 261-278.	0.9	11
101	Modeling exposure period for solar disinfection (SODIS) under varying turbidity and cloud cover conditions. Clean Technologies and Environmental Policy, 2014, 16, 861-874.	4.1	11
102	On the Issue of Incomplete and Missing Water-Quality Data in Mine Site Databases: Comparing Three Imputation Methods. Mine Water and the Environment, 2016, 35, 3-9.	2.0	11
103	Optimization techniques used in design and operations of water distribution networks: a review and comparative study. Sustainable and Resilient Infrastructure, 2017, 2, 153-168.	2.8	11
104	Shake-Table Tests and Numerical Analysis of Steel Frames with Self-Centering Viscous-Hysteretic Devices under the Mainshock–Aftershock Sequences. Journal of Structural Engineering, 2022, 148, .	3.4	11
105	Effect of Topology Irregularities and Construction Quality on Life-Cycle Cost of Reinforced Concrete Buildings. Journal of Earthquake Engineering, 2013, 17, 590-610.	2.5	10
106	Connections for Timber–Concrete Hybrid Building: Experimental and Numerical Model Results. Journal of Performance of Constructed Facilities, 2016, 30, .	2.0	10
107	Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Earthquakes and Aftershocks. Frontiers in Built Environment, 2017, 3, .	2.3	10
108	Life cycle greenhouse gas footprint of shale gas: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 2014, 28, 2185-2204.	4.0	9

#	Article	IF	CITATIONS
109	Friction-Based Connectors for Timber Shear Walls: Static Experimental Tests. Journal of Architectural Engineering, 2019, 25, .	1.6	9
110	Optimum design of a non-conventional multiple tuned mass damper for a complex power plant structure. Structure and Infrastructure Engineering, 2019, 15, 954-964.	3.7	9
111	General corrosion vulnerability assessment using a Bayesian belief network model incorporating experimental corrosion data for X60 pipe steel. Journal of Pipeline Science and Engineering, 2021, 1, 329-338.	4.8	9
112	Risk assessment of CLT-RC hybrid building: Consideration of earthquake types and aftershocks for Vancouver, British Columbia. Soil Dynamics and Earthquake Engineering, 2022, 156, 107240.	3.8	9
113	Impact of Earthquake Types and Aftershocks on Loss Assessment of Non-Code-Conforming Buildings: Case Study with Victoria, British Columbia. Earthquake Spectra, 2017, 33, 551-579.	3.1	8
114	Editorial: Mega Quakes: Cascading Earthquake Hazards and Compounding Risks. Frontiers in Built Environment, $2018, 4, .$	2.3	8
115	Machine learning assisted stochastic-XFEM for stochastic crack propagation and reliability analysis. Theoretical and Applied Fracture Mechanics, 2021, 112, 102882.	4.7	8
116	Experimental Seismic Response of a Japanese Conventional Wooden House Using 2016ÂKumamoto Earthquake Records. Journal of Performance of Constructed Facilities, 2019, 33, 04019014.	2.0	7
117	Multi-objective optimization of inter-story isolated buildings using metaheuristic and derivative-free algorithms. Soil Dynamics and Earthquake Engineering, 2020, 132, 106058.	3.8	7
118	Robust design optimization of nonlinear energy sink under random system parameters. Probabilistic Engineering Mechanics, 2021, 65, 103139.	2.7	7
119	Gaussian process model for maximum and residual drifts of timber-steel hybrid building. Structure and Infrastructure Engineering, 2017, 13, 554-566.	3.7	6
120	Effects of vertical irregularities and construction quality in seismic fragilities for reinforced concrete buildings. International Journal of Earthquake and Impact Engineering, 2017, 2, 1.	0.3	6
121	Seismic Collapse Risk Assessment of Code-Conforming RC Moment Resisting Frame Buildings Designed With 2014 Canadian Standard Association Standard A23.3. Frontiers in Built Environment, 2018, 4, .	2.3	6
122	Financial risk evaluation of non-ductile reinforced concrete buildings in eastern and western Canada. International Journal of Disaster Risk Reduction, 2019, 33, 94-107.	3.9	6
123	Underground Sewer Networks Renewal Complexity Assessment and Trenchless Technology: A Bayesian Belief Network and GIS Framework. Journal of Pipeline Systems Engineering and Practice, 2020, 11, .	1.6	6
124	Dynamic and long-term performance of wood friction connectors for timber shear walls. Engineering Structures, 2021, 241, 112351.	5. 3	6
125	Inelastic displacement demand for nonâ€degrading bilinear SDOF oscillators with self-centering viscous-hysteretic devices. Journal of Building Engineering, 2022, 48, 104010.	3.4	6
126	Residual displacement demand for non-degrading bilinear SDOF oscillators with self-centering viscous-hysteretic devices. Soil Dynamics and Earthquake Engineering, 2022, 155, 107189.	3.8	6

#	Article	IF	Citations
127	Seismic reliability analysis using a multi-fidelity surrogate model: Example of base-isolated buildings. Structural Safety, 2022, 97, 102222.	5.3	6
128	IMPAKT: Oil and Gas Pipeline Integrity Management Program Assessment. Journal of Pipeline Systems Engineering and Practice, $2018, 9, \ldots$	1.6	5
129	Spatiotemporal seismic hazard and risk assessment of M9.0 megathrust earthquake sequences of woodâ€frame houses in Victoria, British Columbia, Canada. Earthquake Engineering and Structural Dynamics, 2021, 50, 6-25.	4.4	5
130	Damped Timber Shear Wall: Shake-Table Tests and Analytical Models. Journal of Structural Engineering, 2021, 147, .	3.4	5
131	Benchmarking of Oil and Gas Pipeline Companies in British Columbia: Integrating Integrity Management Program and Safety Culture Using a Risk-Based Approach. EMJ - Engineering Management Journal, 2022, 34, 526-542.	2.3	5
132	Multi-fidelity approach for uncertainty quantification of buried pipeline response undergoing fault rupture displacements in sand. Computers and Geotechnics, 2021, 136, 104197.	4.7	5
133	Multiobjective design optimization of multi-outrigger tall-timber building: Using SMA-based damper and Lagrangian model. Journal of Building Engineering, 2022, 51, 104358.	3.4	5
134	Seismic performance comparison between direct displacement-based and force-based design of a multi-span continuous reinforced concrete bridge with irregular column heights. Canadian Journal of Civil Engineering, 2014, 41, 440-449.	1.3	4
135	Seismic Risk Management of Existing Reinforced Concrete Buildings in the Cascadia Subduction Zone. Natural Hazards Review, 2017, 18, .	1.5	4
136	Portfolio Seismic Loss Estimation and Riskâ€based Critical Scenarios for Residential Wooden Houses in Victoria, British Columbia, and Canada. Risk Analysis, 2021, 41, 1019-1037.	2.7	4
137	Nonlinear Dynamic Response of Single-Degree-of-Freedom Systems Subjected to Along-Wind Loads. II: Implications for Structural Reliability. Journal of Structural Engineering, 2021, 147, .	3.4	4
138	FRP-laminated Rubber Isolator: Theoretical Study and Shake Table Test on Isolated Building. Journal of Earthquake Engineering, 2023, 27, 1302-1323.	2.5	4
139	An aggregative fuzzy risk analysis for flood incident management. International Journal of Systems Assurance Engineering and Management, 2011, 2, 31-40.	2.4	3
140	Variable stiffness smart structure systems to mitigate seismic induced building damages. Earthquake Engineering and Structural Dynamics, 2013, 42, 221-237.	4.4	3
141	Monotonic and reverse-cyclic load experiment for plywood and RC slab diaphragms used in timber-concrete hybrid building. Structures, 2016, 7, 85-99.	3.6	3
142	Climate Change Impact and Adaptation for Urban Drainage Systems. , 2019, , 73-98.		3
143	Water mains' prioritisation for small to medium-sized utilities of Canada. Infrastructure Asset Management, 2020, 7, 77-85.	1.6	3
144	Storm sewer pipe renewal planning considering deterioration, climate change, and urbanization: a dynamic Bayesian network and GIS framework. Sustainable and Resilient Infrastructure, 2020, , 1-16.	2.8	3

#	Article	IF	Citations
145	Simplified design procedure for nonconventional multiple tuned mass damper and experimental validation. Structural Design of Tall and Special Buildings, 2021, 30, e1818.	1.9	3
146	Shake Table Test of Full-Size Wooden Houses versus Wall Test Result: Comparison of Load-Deformation Relationship. Journal of Performance of Constructed Facilities, 2021, 35, .	2.0	3
147	Nonlinear Dynamic Response of Single-Degree-of-Freedom Systems Subjected to Along-Wind Loads. I: Parametric Study. Journal of Structural Engineering, 2021, 147, 04021177.	3.4	3
148	Structural performance of buried pipeline undergoing fault rupture in sand using Taguchi design of experiments. Soil Dynamics and Earthquake Engineering, 2022, 155, 107174.	3.8	3
149	Handling Incomplete and Missing Data in Corrosion Pit Measurement Database Using Imputation Methods: Model Development Using Artificial Neural Network. Journal of Pipeline Systems Engineering and Practice, 2021, 12, 04021033.	1.6	2
150	Optimization of Water Distribution System Operation with Multiple Tanks and Pumps: Application for Asmara, Eritrea's Water Supply System. Journal of Pipeline Systems Engineering and Practice, 2021, 12, .	1.6	2
151	Risk and life cycle cost based asset management framework for aging water supply system. , 2018, , 296-324.		2
152	Experimental investigation and numerical simulation of self-centering concrete frames with sliding infill walls. Journal of Building Engineering, 2022, 52, 104435.	3.4	2
153	Hierarchical seismic vulnerability assessment of power transmission systems: sensitivity analysis of fragility curves and clustering algorithms. Canadian Journal of Civil Engineering, 2017, 44, 80-89.	1.3	1
154	Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm. Sustainability, 2020, 12, 8733.	3.2	1
155	Operational Risk-Based Decision Making for Wastewater Pipe Management. Journal of Infrastructure Systems, 2021, 27, .	1.8	1
156	Multiphysics modeling of environment assisted cracking of buried pipelines in contact with solutions of near-neutral pH. International Journal of Pressure Vessels and Piping, 2022, 196, 104607.	2.6	1
157	Editorial: Innovative Methodologies for Resilient Buildings and Cities. Frontiers in Built Environment, 2019, 5, .	2.3	O
158	Closure to "Graph-Theoretic Surrogate Measure to Analyze Reliability of Water Distribution System Using Bayesian Belief Network–Based Data Fusion Technique―by Ngandu Balekelayi and Solomon Tesfamariam. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 07020002.	2.6	0
159	Energy-Based Seismic Design Method for Coupled CLT Shear Walls. Lecture Notes in Civil Engineering, 2021, , 221-235.	0.4	O
160	Time Dependent Reliability Analysis for Oil and Gas Pipelines: A Bayesian Spectral Analysis-Based Deterioration Model., 2020,,.		O