Nobuo Kimizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690049/publications.pdf

Version: 2024-02-01

273 papers

11,317 citations

59 h-index 94 g-index

294 all docs 294 docs citations

times ranked

294

9403 citing authors

#	Article	IF	CITATIONS
1	Near-Infrared-to-Visible Photon Upconversion. , 2022, , 29-48.		O
2	Design Guidelines for Rigid Epoxy Resins with High Photon Upconversion Efficiency: Critical Role of Emitter Concentration. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22771-22780.	8.0	6
3	Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet–Triplet Annihilation Upconversion. ACS Applied Materials & Interfaces, 2022, 14, 4132-4143.	8.0	9
4	In optimized rubrene-based nanoparticle blends for photon upconversion, singlet energy collection outcompetes triplet-pair separation, not singlet fission. Journal of Materials Chemistry C, 2022, 10, 4684-4696.	5.5	33
5	Near-infrared vapochromism in lipid-packaged mixed-valence coordination polymers. Chemical Communications, 2022, 58, 2112-2115.	4.1	2
6	Heavy metal-free visible-to-UV photon upconversion with over 20% efficiency sensitized by a ketocoumarin derivative. Journal of Materials Chemistry C, 2022, 10, 4558-4562.	5.5	23
7	Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal–Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
8	Osmium Complex–Chromophore Conjugates with Both Singlet-to-Triplet Absorption and Long Triplet Lifetime through Tuning of the Heavy-Atom Effect. Inorganic Chemistry, 2022, 61, 5982-5990.	4.0	23
9	Liquid Bisazobenzenes as Molecular Solar Thermal Fuel with Enhanced Energy Density. Chemistry Letters, 2022, 51, 402-406.	1.3	5
10	Chemistry of Photon Upconversion Based on Molecular Assembly. Oleoscience, 2022, 22, 195-201.	0.0	0
11	Exciton Recycling in Triplet Energy Transfer from a Defect-Rich Quantum Dot to an Organic Molecule. Journal of Physical Chemistry C, 2022, 126, 11674-11679.	3.1	1
12	Discovery of Key TIPSâ€Naphthalene for Efficient Visibleâ€toâ€UV Photon Upconversion under Sunlight and Room Light**. Angewandte Chemie - International Edition, 2021, 60, 142-147.	13.8	52
13	Discovery of Key TIPSâ€Naphthalene for Efficient Visibleâ€toâ€UV Photon Upconversion under Sunlight and Room Light**. Angewandte Chemie, 2021, 133, 144-149.	2.0	10
14	A Novel Thermocell System Using Proton Solvation Entropy. Chemistry - A European Journal, 2021, 27, 4287-4290.	3.3	9
15	Lightâ€Triggered, Nonâ€Centrosymmetric Selfâ€Assembly of Aqueous Arylazopyrazoles at the Air–Water Interface and Switching of Secondâ€Harmonic Generation. Angewandte Chemie - International Edition, 2021, 60, 6333-6338.	13.8	21
16	Frontispiece: Discovery of Key TIPSâ€Naphthalene for Efficient Visibleâ€toâ€UV Photon Upconversion under Sunlight and Room Light. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
17	Photon upconverting bioplastics with high efficiency and in-air durability. Journal of Materials Chemistry C, 2021, 9, 11655-11661.	5.5	13
18	Lightâ€Triggered, Nonâ€Centrosymmetric Selfâ€Assembly of Aqueous Arylazopyrazoles at the Air–Water Interface and Switching of Secondâ€Harmonic Generation. Angewandte Chemie, 2021, 133, 6403-6408.	2.0	1

#	Article	lF	CITATIONS
19	lonic Charge-Transfer Liquid Crystals Formed by Alternating Supramolecular Copolymerization of Liquid π-Donors and TCNQ. Frontiers in Chemistry, 2021, 9, 657246.	3.6	8
20	Supramolecular Thermocells Based on Thermo-Responsiveness of Host–Guest Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 1525-1546.	3.2	24
21	Bulk Transparent Photon Upconverting Films by Dispersing High-Concentration Ionic Emitters in Epoxy Resins. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13676-13683.	8.0	14
22	Porphyrins as Versatile, Aggregation-Tolerant, and Biocompatible Polarizing Agents for Triplet Dynamic Nuclear Polarization of Biomolecules. Journal of Physical Chemistry Letters, 2021, 12, 2645-2650.	4.6	16
23	Design Guidelines to Elongate Spin–Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization. Journal of Physical Chemistry A, 2021, 125, 4334-4340.	2.5	8
24	High Positive Seebeck Coefficient of Aqueous I ^{â€"} /I ₃ ^{â€"} Thermocells Based on Hostâ€"Guest Interactions and LCST Behavior of PEGylated α-Cyclodextrin. ACS Applied Energy Materials, 2021, 4, 5326-5331.	5.1	19
25	High seebeck coefficient in middle-temperature thermocell with deep eutectic solvent. Scientific Reports, 2021, 11, 11929.	3.3	12
26	Singlet-to-Triplet Absorption for Near-Infrared-to-Visible Photon Upconversion. Bulletin of the Chemical Society of Japan, 2021, 94, 1760-1768.	3.2	13
27	Liquidâ€Based Multijunction Molecular Solar Thermal Energy Collection Device. Advanced Science, 2021, 8, e2103060.	11.2	27
28	Spin Statistics for Triplet–Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. Jacs Au, 2021, 1, 2188-2201.	7.9	44
29	Frontispiz: Discovery of Key TIPSâ€Naphthalene for Efficient Visibleâ€toâ€UV Photon Upconversion under Sunlight and Room Light. Angewandte Chemie, 2021, 133, .	2.0	0
30	Green-to-UV photon upconversion enabled by new perovskite nanocrystal-transmitter-emitter combination. Nanoscale, 2021, 13, 19890-19893.	5.6	16
31	Enhanced Electric Polarization and Polar Switching of Dipolar Aromatic Liquids Confined in Supramolecular Gel Networks. Journal of the American Chemical Society, 2020, 142, 1424-1432.	13.7	10
32	Visibleâ€toâ€UV Photon Upconversion in Nanostructured Chromophoric Ionic Liquids. ChemistryOpen, 2020, 9, 14-17.	1.9	20
33	Thermocells Driven by Phase Transition of Hydrogel Nanoparticles. Journal of the American Chemical Society, 2020, 142, 17318-17322.	13.7	54
34	Photon Upconverting Solid Films with Improved Efficiency for Endowing Perovskite Solar Cells with Nearâ€Infrared Sensitivity. ChemPhotoChem, 2020, 4, 5271-5278.	3.0	26
35	Increased Seebeck Coefficient of [Fe(CN) ₆] ^{4â^'/3â^'} Thermocell Based on the Selective Electrostatic Interactions with Cationic Micelles. Chemistry Letters, 2020, 49, 1197-1200.	1.3	14
36	Leaping across the visible range: near-infrared-to-violet photon upconversion employing a silyl-substituted anthracene. Chemical Communications, 2020, 56, 7017-7020.	4.1	44

3

#	Article	IF	CITATIONS
37	Enhanced Seebeck coefficients of thermocells by heat-induced deposition of I ₃ ^{â°'} /hydrophobized α-cyclodextrin complexes on electrodes. Chemical Communications, 2020, 56, 7013-7016.	4.1	17
38	Monomolecular covalent honeycomb nanosheets produced by surface-mediated polycondensation between 1,3,5-triamino benzene and benzene-1,3,5-tricarbox aldehyde on Au(111). Nanoscale Advances, 2020, 2, 3202-3208.	4.6	4
39	A Liquid Arylazopyrazole Derivative as Molecular Solar Thermal Fuel with Long-term Thermal Stability. Chemistry Letters, 2020, 49, 736-740.	1.3	15
40	Number of Surface-Attached Acceptors on a Quantum Dot Impacts Energy Transfer and Photon Upconversion Efficiencies. ACS Photonics, 2020, 7, 1876-1884.	6.6	13
41	Polar Switching of Dipolar Molecules Confined in Submicron- and Micron-sized Pores in Polymer Films. Chemistry Letters, 2020, 49, 255-259.	1.3	3
42	Polar Switching of Dipolar Molecules Induced by Solid Dispersion-to-organogel Phase Transition. Chemistry Letters, 2020, 49, 267-271.	1.3	2
43	Triplet dynamic nuclear polarization of crystalline ice using water-soluble polarizing agents. Chemical Communications, 2020, 56, 3717-3720.	4.1	21
44	Visibleâ€toâ€UV Photon Upconversion in Nanostructured Chromophoric Ionic Liquids. ChemistryOpen, 2020, 9, 3-3.	1.9	1
45	Nearâ€Infraredâ€toâ€Visible Photon Upconversion by Introducing an Sâ^T Absorption Sensitizer into a Metalâ€Organic Framework. ChemNanoMat, 2020, 6, 916-919.	2.8	11
46	Stimuliâ€Responsive Molecular Photon Upconversion. Angewandte Chemie, 2020, 132, 10336-10348.	2.0	3
47	Stimuliâ€Responsive Molecular Photon Upconversion. Angewandte Chemie - International Edition, 2020, 59, 10252-10264.	13.8	48
48	Visible-to-UV photon upconversion in air-saturated water by multicomponent co-assembly. Molecular Systems Design and Engineering, 2020, 5, 792-796.	3.4	16
49	Materials chemistry of triplet dynamic nuclear polarization. Chemical Communications, 2020, 56, 7217-7232.	4.1	26
50	Photon Upconversion in TTA-Inducing Ionic Liquids: Pinpointing the Role of IL Nanostructured Media Using MD Simulations. Journal of Physical Chemistry B, 2020, 124, 3137-3144.	2.6	3
51	Regioselective Functionalization of the Mesoporous Metal–Organic Framework, NU-1000, with Photo-Active Tris-(2,2′-bipyridine)ruthenium(II). ACS Omega, 2020, 5, 30299-30305.	3.5	17
52	Upconverting Oil-Laden Hollow Mesoporous Silica Microcapsules for Anti-Stokes-Based Biophotonic Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26571-26580.	8.0	15
53	Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species. ChemSusChem, 2019, 12, 4014-4020.	6.8	11
54	Triplet dynamic nuclear polarization of nanocrystals dispersed in water at room temperature. Physical Chemistry Chemical Physics, 2019, 21, 16408-16412.	2.8	12

#	Article	lF	Citations
55	Visible-to-UV Photon Upconversion Sensitized by Lead Halide Perovskite Nanocrystals. Chemistry Letters, 2019, 48, 1347-1350.	1.3	42
56	Absolute Method to Certify Quantum Yields of Photon Upconversion via Triplet–Triplet Annihilation. Journal of Physical Chemistry A, 2019, 123, 10197-10203.	2.5	35
57	Nearâ€Infrared Optogenetic Genome Engineering Based on Photonâ€Upconversion Hydrogels. Angewandte Chemie, 2019, 131, 17991-17997.	2.0	12
58	Nearâ€Infrared Optogenetic Genome Engineering Based on Photonâ€Upconversion Hydrogels. Angewandte Chemie - International Edition, 2019, 58, 17827-17833.	13.8	103
59	Synthesis of a Redox-active Metal–Organic Framework MIL-116(Fe) and Its Lithium Ion Battery Cathode Properties. Chemistry Letters, 2019, 48, 1379-1382.	1.3	13
60	Hexakis(2,3,6-tri- <i>O</i> -methyl)-α-cyclodextrin–l ₅ ^{â^²} complex in aqueous l ^{â^²} /l ₃ ^{â°²} thermocells and enhancement in the Seebeck coefficient. Chemical Science, 2019, 10, 773-780.	7.4	30
61	A Theoretical Basis for the Enhancement of Seebeck Coefficients in Supramolecular Thermocells. Bulletin of the Chemical Society of Japan, 2019, 92, 1142-1147.	3.2	12
62	Demonstration of an azobenzene derivative based solar thermal energy storage system. Journal of Materials Chemistry A, 2019, 7, 15042-15047.	10.3	75
63	Recent Progress in Photon Upconverting Gels. Gels, 2019, 5, 18.	4.5	18
64	Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry - A European Journal, 2019, 25, 6042-6042.	3.3	0
65	Hierarchical Hybrid Metal–Organic Frameworks: Tuning the Visible/Near-Infrared Optical Properties by a Combination of Porphyrin and Its Isomer Units. Inorganic Chemistry, 2019, 58, 4647-4656.	4.0	16
66	Liquid crystalline microspheres of azobenzene amphiphiles formed by thermally induced pH changes in binary water–hydrolytic ionic liquid media. Chemical Communications, 2019, 55, 5459-5462.	4.1	2
67	Nonpentacene Polarizing Agents with Improved Air Stability for Triplet Dynamic Nuclear Polarization at Room Temperature. Journal of Physical Chemistry Letters, 2019, 10, 2208-2213.	4.6	31
68	Synthesis of Chiral Labtb and Visualization of Its Enantiomeric Excess by Induced Circular Dichroism Imaging. Chemistry - A European Journal, 2019, 25, 6698-6702.	3.3	18
69	Quasi-thresholdless Photon Upconversion in Metal–Organic Framework Nanocrystals. Nano Letters, 2019, 19, 2169-2177.	9.1	43
70	Transcription of Chirality from Metal–Organic Framework to Polythiophene. Journal of the American Chemical Society, 2019, 141, 19565-19569.	13.7	43
71	Aqueous Photon Upconversion by Anionic Acceptors Self-Assembled on Cationic Bilayer Membranes with a Long Triplet Lifetime. Organic Materials, 2019, 01, 043-049.	2.0	3
72	Oligo(ethylene glycol)/alkylâ€modified Chromophore Assemblies for Photon Upconversion in Water. Chemistry - an Asian Journal, 2019, 14, 1723-1728.	3.3	8

#	Article	IF	Citations
73	Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry - A European Journal, 2019, 25, 6124-6130.	3.3	26
74	Hybridizing semiconductor nanocrystals with metal–organic frameworks for visible and near-infrared photon upconversion. Dalton Transactions, 2018, 47, 8590-8594.	3.3	28
75	Aggregation-free sensitizer dispersion in rigid ionic crystals for efficient solid-state photon upconversion and demonstration of defect effects. Journal of Materials Chemistry C, 2018, 6, 5609-5615.	5.5	19
76	Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion. Chemical Communications, 2018, 54, 6828-6831.	4.1	15
77	Enhancement of Ionic Conductivity in Organic Ionic Plastic Crystals by Introducing Racemic Ammonium Ions. Chemistry Letters, 2018, 47, 497-499.	1.3	10
78	Stimuliâ€Responsive Dualâ€Color Photon Upconversion: A Singletâ€toâ€Triplet Absorption Sensitizer in a Soft Luminescent Cyclophane. Angewandte Chemie, 2018, 130, 2856-2860.	2.0	11
79	Stimuliâ€Responsive Dualâ€Color Photon Upconversion: A Singletâ€toâ€Triplet Absorption Sensitizer in a Soft Luminescent Cyclophane. Angewandte Chemie - International Edition, 2018, 57, 2806-2810.	13.8	28
80	Synthesis and Electric Properties of a Twoâ€Dimensional Metalâ€Organic Framework Based on Phthalocyanine. Chemistry - A European Journal, 2018, 24, 1806-1810.	3.3	105
81	Thermo-electrochemical cells empowered by selective inclusion of redox-active ions by polysaccharides. Sustainable Energy and Fuels, 2018, 2, 472-478.	4.9	35
82	Selective Ionic Conduction in Choline Iodide/Triiodide Solid Electrolyte and Its Application to Thermocells. Chemistry Letters, 2018, 47, 261-264.	1.3	8
83	Specific Uniaxial Self-assembly of Columnar Perylene Liquid Crystals in Au Nanofin Arrays. Chemistry Letters, 2018, 47, 354-357.	1.3	0
84	A supramolecular thermocell consisting of ferrocenecarboxylate and \hat{l}^2 -cyclodextrin that has a negative Seebeck coefficient. Polymer Journal, 2018, 50, 771-774.	2.7	11
85	Innentitelbild: Stimuliâ€Responsive Dualâ€Color Photon Upconversion: A Singletâ€toâ€Triplet Absorption Sensitizer in a Soft Luminescent Cyclophane (Angew. Chem. 11/2018). Angewandte Chemie, 2018, 130, 2778-2778.	2.0	0
86	Highly Fluorescent Metal–Organic-Framework Nanocomposites for Photonic Applications. Nano Letters, 2018, 18, 528-534.	9.1	37
87	Nonpolar-to-Polar Phase Transition of a Chiral Ionic Plastic Crystal and Switch of the Rotation Symmetry. Journal of the American Chemical Society, 2018, 140, 291-297.	13.7	30
88	Two-dimensional structural ordering in a chromophoric ionic liquid for triplet energy migration-based photon upconversion. Physical Chemistry Chemical Physics, 2018, 20, 3233-3240.	2.8	21
89	Reentrant Gel–Sol–Gel Transition of a Lipophilic Co(II) Coordination Polymer. Chemistry Letters, 2018, 47, 97-99.	1.3	4
90	Dynamic Nuclear Polarization of Metal–Organic Frameworks Using Photoexcited Triplet Electrons. Journal of the American Chemical Society, 2018, 140, 15606-15610.	13.7	29

#	Article	IF	CITATIONS
91	Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. Journal of Organic Chemistry, 2018, 83, 7928-7938.	3.2	22
92	Donor–Acceptor–Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion. Journal of the American Chemical Society, 2018, 140, 8788-8796.	13.7	57
93	Solid-State Photon Upconversion Materials: Structural Integrity and Triplet–Singlet Dual Energy Migration. Journal of Physical Chemistry Letters, 2018, 9, 4613-4624.	4.6	64
94	Simple and Versatile Platform for Air-Tolerant Photon Upconverting Hydrogels by Biopolymer–Surfactant–Chromophore Co-assembly. Journal of the American Chemical Society, 2018, 140, 10848-10855.	13.7	74
95	Self-assembly of Oligo(ethylene oxide)-linked Diammonium Ions with Polyoxometalates into Ordered Polyhedron Nanocrystals in Aqueous Media. Chemistry Letters, 2017, 46, 430-433.	1.3	0
96	Photoresponsive Nanosheets of Polyoxometalates Formed by Controlled Selfâ€Assembly Pathways. Angewandte Chemie - International Edition, 2017, 56, 2974-2978.	13.8	48
97	Near infrared-to-blue photon upconversion by exploiting direct S–T absorption of a molecular sensitizer. Journal of Materials Chemistry C, 2017, 5, 5063-5067.	5.5	77
98	Applicability of MIL-101(Fe) as a cathode of lithium ion batteries. Chemical Communications, 2017, 53, 8215-8218.	4.1	75
99	Triplet sensitization by perovskite nanocrystals for photon upconversion. Chemical Communications, 2017, 53, 8261-8264.	4.1	119
100	Photoresponsive Nanosheets of Polyoxometalates Formed by Controlled Selfâ€Assembly Pathways. Angewandte Chemie, 2017, 129, 3020-3024.	2.0	17
101	Sensitizer-Free Photon Upconversion in Single-Component Brominated Aromatic Crystals. ChemistrySelect, 2017, 2, 7597-7601.	1.5	5
102	New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Accounts of Chemical Research, 2017, 50, 2487-2495.	15.6	245
103	Introduction of Thiourea into Metal–Organic Frameworks by Immersion Technique and Their Phase Transition Characteristics. Chemistry Letters, 2017, 46, 115-117.	1.3	2
104	All-or-none switching of photon upconversion in self-assembled organogel systems. Faraday Discussions, 2017, 196, 305-316.	3.2	29
105	Kinetically controlled crystal growth approach to enhance triplet energy migration-based photon upconversion. Journal of Photonics for Energy, 2017, 8, 1.	1.3	16
106	Peptide nanospheres selfâ€assembled from a modified <i>β</i> â€annulus peptide of Sesbania mosaic virus. Biopolymers, 2016, 106, 470-475.	2.4	14
107	Self-assembly of Ni-NTA-modified \hat{l}^2 -annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Organic and Biomolecular Chemistry, 2016, 14, 7869-7874.	2.8	32
108	Molecularly Dispersed Donors in Acceptor Molecular Crystals for Photon Upconversion under Low Excitation Intensity. Chemistry - A European Journal, 2016, 22, 2060-2067.	3.3	47

7

#	Article	IF	Citations
109	Increased vis-to-UV upconversion performance by energy level matching between a TADF donor and high triplet energy acceptors. Journal of Materials Chemistry C, 2016, 4, 6447-6451.	5. 5	100
110	Triplet energy migration-based photon upconversion by amphiphilic molecular assemblies in aerated water. Chemical Science, 2016, 7, 5224-5229.	7.4	53
111	Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection. Journal of the American Chemical Society, 2016, 138, 6541-6549.	13.7	27
112	Hierarchical Self-Assembly of Luminescent Tartrate-Bridged Chiral Binuclear Tb(III) Complexes in Ethanol. Langmuir, 2016, 32, 10597-10603.	3.5	5
113	Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization. Journal of the American Chemical Society, 2016, 138, 10502-10507.	13.7	139
114	Ferroelectric Coordination Polymers Selfâ€Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands. Chemistry - A European Journal, 2016, 22, 14213-14218.	3.3	7
115	Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly. Langmuir, 2016, 32, 12304-12322.	3.5	63
116	Employing Coreâ€Shell Quantum Dots as Triplet Sensitizers for Photon Upconversion. Chemistry - A European Journal, 2016, 22, 7721-7726.	3.3	87
117	Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S ₀ –T ₁ Absorption. Journal of the American Chemical Society, 2016, 138, 8702-8705.	13.7	178
118	Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chemical Communications, 2016, 52, 5354-5370.	4.1	152
119	Photoinduced Crystallization in Ionic Liquids: Photodimerization-induced Equilibrium Shift and Crystal Patterning. Chemistry Letters, 2015, 44, 908-910.	1.3	8
120	Growth of Twoâ€Dimensional Metal–Organic Framework Nanosheet Crystals on Graphite Substrates by Thermal Equilibrium Treatment in Acetic Acid Vapor. ChemNanoMat, 2015, 1, 259-263.	2.8	8
121	Aggregationâ€Induced Photon Upconversion through Control of the Triplet Energy Landscapes of the Solution and Solid States. Angewandte Chemie - International Edition, 2015, 54, 7544-7549.	13.8	67
122	Photonâ€Upconverting Ionic Liquids: Effective Triplet Energy Migration in Contiguous Ionic Chromophore Arrays. Angewandte Chemie - International Edition, 2015, 54, 11550-11554.	13.8	69
123	Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability. Journal of the American Chemical Society, 2015, 137, 1887-1894.	13.7	268
124	Fast and long-range triplet exciton diffusion inÂmetal–organic frameworks for photon upconversion at ultralow excitation power. Nature Materials, 2015, 14, 924-930.	27.5	111
125	Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems. Scientific Reports, 2015, 5, 10882.	3.3	145
126	Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm. Physical Chemistry Chemical Physics, 2015, 17, 22557-22560.	2.8	31

#	Article	IF	CITATIONS
127	Interlocked dimerization of C ₃ -Symmetrical boron difluoride complex: designing non-cooperative supramolecular materials for luminescent thin films. RSC Advances, 2015, 5, 60373-60379.	3.6	9
128	An Electropolymerized Crystalline Film Incorporating Axially-Bound Metalloporphycenes: Remarkable Reversibility, Reproducibility, and Coloration Efficiency of Ruthenium(II/III)-Based Electrochromism. Inorganic Chemistry, 2015, 54, 11061-11063.	4.0	33
129	Photoliquefiable Ionic Crystals: A Phase Crossover Approach for Photon Energy Storage Materials with Functional Multiplicity. Angewandte Chemie - International Edition, 2015, 54, 1532-1536.	13.8	149
130	Thermodynamic Self-Assembly of Two-Dimensional <i>π</i> Fonjugated Metal–Porphyrin Covalent Organic Frameworks by "On-Site―Equilibrium Polymerization. Journal of Nanoscience and Nanotechnology, 2014, 14, 2211-2216.	0.9	16
131	Light-Reducible Dissipative Nanostructures Formed at the Solid–Liquid Interface. Langmuir, 2014, 30, 14219-14225.	3.5	6
132	Positional selectivity of reversible azomethine condensation reactions at solid/liquid interfaces leading to supramolecule formation. Journal of Electroanalytical Chemistry, 2014, 716, 145-149.	3.8	13
133	Spectroscopic readout of polyoxometalates' molecular information via self-assembly. Chemical Communications, 2014, 50, 599-601.	4.1	10
134	A liquid azobenzene derivative as a solvent-free solar thermal fuel. Chemical Communications, 2014, 50, 15803-15806.	4.1	120
135	A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion. Chemical Communications, 2014, 50, 13111-13113.	4.1	80
136	Self-Assembly of Azobenzene Bilayer Membranes in Binary Ionic Liquid–Water Nanostructured Media. Langmuir, 2014, 30, 2376-2384.	3.5	13
137	Coordination Lamellar Nanofibers Consisting of <i>N</i> -(2-Hydroxydodecyl)-substituted Amino Acid and Divalent Copper Cation. Chemistry Letters, 2014, 43, 1031-1033.	1.3	0
138	Design of a Dynamic Polymer Interface for Chiral Discrimination. Journal of the American Chemical Society, 2013, 135, 10282-10285.	13.7	53
139	Controlled Self-Assembly and Luminescence Characteristics of Eu(III) Complexes in Binary Aqueous/Organic Media. Langmuir, 2013, 29, 12930-12935.	3.5	22
140	Photon Upconverting Liquids: Matrix-Free Molecular Upconversion Systems Functioning in Air. Journal of the American Chemical Society, 2013, 135, 19056-19059.	13.7	210
141	Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polymer Journal, 2013, 45, 529-534.	2.7	43
142	Self-assembly and functionalization of lipophilic metal-triazole complexes in various media. Polymer Journal, 2013, 45, 384-390.	2.7	12
143	Formation, Assembly, and Function of Nano- and Micron-Sized Coordination Polymer Particles. Kobunshi Ronbunshu, 2013, 70, 235-241.	0.2	0
144	Redox-active Microcapsules of Cytochrome <i>c</i> Formed at the Ionic Liquidâ€"Water Interface. Chemistry Letters, 2013, 42, 788-790.	1.3	5

#	Article	IF	CITATIONS
145	Controlled Formation of Microspheres from Ferrocene-derivatized Amino Acids in Binary Aqueous/Organic Media. Chemistry Letters, 2013, 42, 501-503.	1.3	3
146	Biopolymer-Encapsulated Protein Microcapsules Spontaneously Formed at the Ionic Liquid–Water Interface. Biomacromolecules, 2012, 13, 4075-4080.	5.4	22
147	Controlled self-assembly of amphiphiles in ionic liquids and the formation of ionogels by molecular tuning of cohesive energies. Polymer Journal, 2012, 44, 665-671.	2.7	28
148	Controlled Polymerization and Self-Assembly of Halogen-Bridged Diruthenium Complexes in Organic Media and Their Dielectrophoretic Alignment. Journal of the American Chemical Society, 2012, 134, 1192-1199.	13.7	28
149	Chemical liquid deposition of aromatic poly(azomethine)s by spontaneous on-site polycondensation in aqueous solution. Chemical Communications, 2012, 48, 3103.	4.1	14
150	Electrochemically Controlled 2D Assembly of Paddle-Wheel Diruthenium Complexes on the Au(111) Surface and Identification of Their Redox States. Journal of Physical Chemistry C, 2012, 116, 17729-17733.	3.1	7
151	Synthesis of TiO ₂ Nanocoral Structures in Ever-Changing Aqueous Reaction Systems. Langmuir, 2012, 28, 2637-2642.	3.5	16
152	Converting molecular information of redox coenzymes via self-assembly. Chemical Communications, 2012, 48, 11106.	4.1	7
153	<i>In Situ</i> STM Investigation of Aromatic Poly(azomethine) Arrays Constructed by "On-Site― Equilibrium Polymerization. Langmuir, 2012, 28, 13844-13851.	3.5	31
154	lonic Liquids Induced Structural Changes of Bovine Serum Albumin in Aqueous Media: A Detailed Physicochemical and Spectroscopic Study. Journal of Physical Chemistry B, 2012, 116, 11924-11935.	2.6	96
155	Controlled morphology and photoreduction characteristics of polyoxometalate(POM)/lipid complexes and the effect of hydrogen bonding at molecular interfaces. Chemical Communications, 2011, 47, 6455.	4.1	26
156	Trigonal tryptophane zipper as a novel building block for pH-responsive peptide nano-assemblies. Chemical Communications, 2011, 47, 265-267.	4.1	34
157	Water/Ionic Liquid Interfaces as Fluid Scaffolds for the Two-Dimensional Self-Assembly of Charged Nanospheres. Langmuir, 2011, 27, 1281-1285.	3.5	24
158	Conversion of Molecular Information by Luminescent Nanointerface Self-Assembled from Amphiphilic Tb(III) Complexes. Journal of the American Chemical Society, 2011, 133, 17370-17374.	13.7	76
159	Thermodynamically Controlled Self-Assembly of Covalent Nanoarchitectures in Aqueous Solution. ACS Nano, 2011, 5, 3923-3929.	14.6	162
160	One-pot alkaline vapor oxidation synthesis and electrocatalytic activity towards glucose oxidation of CuO nanobelt arrays. RSC Advances, 2011, 1, 187.	3.6	24
161	Controlled Release of Guest Molecules from Spherical Assembly of Trigonal Gultathione by Disulfide Recombination. Chemistry Letters, 2011, 40, 711-713.	1.3	15
162	Synthesis and Properties of Acetylene-bridged N-Confused Porphyrin Dimers. Chemistry Letters, 2011, 40, 1021-1023.	1.3	15

#	Article	IF	Citations
163	Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide. International Journal of Molecular Sciences, 2011, 12, 5187-5199.	4.1	10
164	Synthesis of Lipophilic Gold Nanosheets by Using Reducing Stabilizers and Their Reversible Transformation between Golden Solid. Chemistry Letters, 2010, 39, 226-227.	1.3	2
165	Electrochemically Controlled Self-assembly of Lipophilic Fell 1,2,4-Triazole Complexes in Chloroform. Chemistry Letters, 2010, 39, 790-791.	1.3	13
166	Glutathione Nanosphere: Self-Assembly of Conformation-Regulated Trigonal-Glutathiones in Water. Bulletin of the Chemical Society of Japan, 2010, 83, 880-886.	3.2	22
167	Preparation and Reactivity of Vitamin B12–TiO2 Hybrid Catalyst Immobilized on a Glass Plate. Bulletin of the Chemical Society of Japan, 2010, 83, 170-172.	3.2	17
168	Switching On Luminescence in Nucleotide/Lanthanide Coordination Nanoparticles via Synergistic Interactions with a Cofactor Ligand. Chemistry - A European Journal, 2010, 16, 3604-3607.	3.3	65
169	Selfâ€Assembled Synthetic Viral Capsids from a 24â€mer Viral Peptide Fragment. Angewandte Chemie - International Edition, 2010, 49, 9662-9665.	13.8	111
170	Aqueous Nanospheres Self-Assembled from Hyperbranched Polymers and Silver Ions: Molecular Inclusion and Photoreduction Characteristics. Macromolecules, 2010, 43, 8971-8976.	4.8	18
171	Selective inclusion of anionic quantum dots in coordination network shells of nucleotides and lanthanide ions. Chemical Communications, 2010, 46, 4333.	4.1	55
172	Spin crossover characteristics of nanofibrous Fell-1,2,4-triazole complexes in liquid crystals. Chemical Communications, 2010, 46, 1229.	4.1	43
173	Confining Molecules within Aqueous Coordination Nanoparticles by Adaptive Molecular Selfâ€Assembly. Angewandte Chemie - International Edition, 2009, 48, 9465-9468.	13.8	111
174	Holey Gold Nanowires Formed by Photoconversion of Dissipative Nanostructures Emerged at the Aqueous–Organic Interface. Small, 2009, 5, 2043-2047.	10.0	29
175	One-Pot Room-Temperature Synthesis of Single-Crystalline Gold Nanocorolla in Water. Journal of the American Chemical Society, 2009, 131, 14407-14412.	13.7	72
176	CTAB-induced morphological transition of DNA micro-assembly from filled spheres to hollow capsules. Molecular BioSystems, 2009, 5, 921.	2.9	11
177	Spontaneous self-assembly of nanospheres from trigonal conjugate of glutathione in water. Soft Matter, 2009, 5, 2463.	2.7	33
178	Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide lons. Journal of the American Chemical Society, 2009, 131, 2151-2158.	13.7	314
179	Photoinduced Outgrowth of Gold Nanotadpoles in Aqueous Bilayer Dispersions. Chemistry Letters, 2009, 38, 688-689.	1.3	4
180	Nano-Film Structures Constructed by Self-Assembly of Co(III) Biuretato Complexes and Long Alkyl Imidazolium Cations. Journal of Nanoscience and Nanotechnology, 2009, 9, 307-312.	0.9	0

#	Article	IF	Citations
181	Amplification of Molecular Information through Selfâ€Assembly: Nanofibers Formed from Amino Acids and Cyanine Dyes by Extended Molecular Pairing. Angewandte Chemie - International Edition, 2008, 47, 106-108.	13.8	37
182	Controlled self-assembly of nucleotide–lanthanide complexes: specific formation of nanofibers from dimeric guanine nucleotides. Chemical Communications, 2008, , 6534.	4.1	46
183	Lipid-Packaged Linear Iron(II) Triazole Complexes in Solution: Controlled Spin Conversion via Solvophobic Self-Assembly. Journal of the American Chemical Society, 2008, 130, 5622-5623.	13.7	68
184	Self-Assembly of Nanofiber with Uniform Width from Wheel-Type Trigonal-Î ² -Sheet-Forming Peptide. Biomacromolecules, 2008, 9, 913-918.	5.4	33
185	Morphological Transformation of Ultrathin Gold Nanosheets to Rounded Nanotapes in the Photomediated Reduction Process. Chemistry Letters, 2008, 37, 352-353.	1.3	2
186	Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 2008, 37, 446-447.	1.3	51
187	Coordination Structure Changes of Linear Cobalt(II) Triazole Complexes Induced by Binding of Long-chained Alcohols: Adaptive Molecular Clefts. Chemistry Letters, 2008, 37, 192-193.	1.3	15
188	In Situ Observation of Spherical DNA Assembly in Water and the Controlled Release of Bound Dyes. Biomacromolecules, 2007, 8, 2726-2732.	5.4	31
189	Binding of lectins to DNA micro-assemblies: Modification of nucleo-cages with lactose-conjugated psoralen. Bioorganic and Medicinal Chemistry, 2007, 15, 4311-4317.	3.0	24
190	Photoresponsive molecular wires of Fell triazole complexes in organic media and light-induced morphological transformations. Chemical Communications, 2006, , 2442.	4.1	78
191	Self-Assembling Nanofibers Formed from Lipophilic Supramolecular Metal Complexes. Kobunshi, 2006, 55, 138-141.	0.0	0
192	In Situ Observation of Spherical DNA Assembly "Nucleo-cages―in Water and Their Stabilization by Photocrosslinking. Chemistry Letters, 2006, 35, 486-487.	1.3	14
193	Supramolecular control of spin-crossover phenomena in lipophilic Fe(II)-1,2,4-triazole complexes. Journal of Polymer Science Part A, 2006, 44, 5192-5202.	2.3	63
194	Supramolecular solvatochromism. Effect of solvents on the self-assembly and charge transfer absorption characteristics of lipid-packaged, linear mixed-valence platinum complexes. Science and Technology of Advanced Materials, 2006, 7, 629-634.	6.1	15
195	Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles. Thin Solid Films, 2006, 515, 1618-1622.	1.8	0
196	Templated Synthesis of Mesoscopic Tube Silicates Using Aqueous Mixtures of Naphthalenediol and Ammonium Surfactants. Chemistry Letters, 2005, 34, 462-463.	1.3	2
197	Ultrathin Gold Nanosheets Formed by Photoreduction at the Ionic Liquid/Water Interface. Chemistry Letters, 2005, 34, 1234-1235.	1.3	35
198	Self-Assembled Nanowires of Lipid-packaged Halogen-bridged Platinum Complexes Formed by One-pot Oxidation of Pt(en)2complexes by Au(III) Ions. Chemistry Letters, 2005, 34, 248-249.	1.3	12

#	Article	IF	Citations
199	Adsorption-induced Self-fusion of Cationic Gold Nanoparticles on Tobacco Mosaic Virus (TMV). Chemistry Letters, 2005, 34, 1498-1499.	1.3	9
200	Enzymatic Synthesis of Gold Nanoparticles Wrapped by Glucose Oxidase. Chemistry Letters, 2005, 34, 416-417.	1.3	8
201	Molecular Self-Assembly in Ionic Liquids. , 2005, , 143-156.		2
202	?-Helical Polypeptide Microcapsules Formed by Emulsion-Templated Self-Assembly. Chemistry - A European Journal, 2005, 11, 1574-1578.	3.3	41
203	Artificial Peptide-Nanospheres Self-Assembled from Three-Way Junctions of β-Sheet-Forming Peptides. Journal of the American Chemical Society, 2005, 127, 10148-10149.	13.7	145
204	ATP as Building Blocks for the Self-Assembly of Excitonic Nanowires. Journal of the American Chemical Society, 2005, 127, 1358-1359.	13.7	92
205	Soluble Amphiphilic Nanostructures and Potential Applications. , 2005, , .		1
206	Heat-Set Gel-like Networks of Lipophilic Co(II) Triazole Complexes in Organic Media and Their Thermochromic Structural Transitions. Journal of the American Chemical Society, 2004, 126, 2016-2021.	13.7	281
207	New Self-Assembling Nanomaterials: Development of Nanowires Based on the One-Dimensional Metal Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 440-446.	0.1	3
208	Formation of an Isolated Spherical Three-Dimensional Nanoparticle Assembly as Stable Submicrometer-Sized Units by Using an Inorganic Wrapping Technique. Advanced Materials, 2003, 15, 499-503.	21.0	22
209	Self-assembly in mesoscopic dimension and artificial supramolecular membranes. Current Opinion in Chemical Biology, 2003, 7, 702-709.	6.1	24
210	Interfacial Synthesis of Hollow TiO2Microspheres in Ionic Liquids. Journal of the American Chemical Society, 2003, 125, 6386-6387.	13.7	642
211	Lectin-mediated Supramolecular Junctions of Galactose-derivatized Single-walled Carbon Nanotubes. Chemistry Letters, 2003, 32, 212-213.	1.3	34
212	EFFECT OF LIPID-PACKAGING ON THE CHARGE TRANSFER CHARACTERISTICS OF ONE-DIMENSIONAL, MIXED-VALENCE PLATINUM COMPLEXES. , 2003, , .		0
213	Pillared honeycomb nanoarchitectures formed on solid surfaces by the self-assembly of lipid-packaged one-dimensional Pt complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4922-4926.	7.1	49
214	EFFECT OF LIPID-PACKAGING ON THE CHARGE TRANSFER CHARACTERISTICS OF ONE-DIMENSIONAL, MIXED-VALENCE PLATINUM COMPLEXES. International Journal of Nanoscience, 2002, 01, 391-395.	0.7	7
215	Supramolecular Nanostructures Formed from Dicationic Azobenzene Compounds and Perfluorinated Dicarboxylic Acids Kobunshi Ronbunshu, 2002, 59, 772-777.	0.2	0
216	Solvatochromic Nanowires Self-assembled from Cationic, Chloro-bridged Linear Platinum Complexes and Anionic Amphiphiles. Chemistry Letters, 2002, 31, 1252-1253.	1.3	21

#	Article	IF	Citations
217	Formation of Nanoparticle Arrays at the Interlayer of Aqueous Phosphate Bilayers. Chemistry Letters, 2002, 31, 528-529.	1.3	5
218	Vesicles in Salt: Formation of Bilayer Membranes from Dialkyldimethylammonium Bromides in Ether-containing Ionic Liquids. Chemistry Letters, 2002, 31, 1018-1019.	1.3	71
219	Metal Coating of DNA Molecules by Cationic, Metastable Gold Nanoparticles. Chemistry Letters, 2002, 31, 1172-1173.	1.3	78
220	New Colorimetric Detection of Glucose by Means of Electron-Accepting Indicators: Ligand Substitution of [Fe(acac)3â^n(phen)n]n+ Complexes Triggered by Electron Transfer from Glucose Oxidase. Chemistry - A European Journal, 2002, 8, 5580-5584.	3.3	61
221	Light-Harvesting Supramolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores. Advanced Materials, 2002, 14, 1113.	21.0	156
222	Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels. Langmuir, 2001, 17, 6759-6761.	3.5	320
223	Direct Preparation and Size Control of Palladium Nanoparticle Hydrosols by Water-Soluble Isocyanide Ligands. Langmuir, 2001, 17, 4701-4703.	3.5	78
224	Hierarchical Self-Assembly of Chiral Complementary Hydrogen-Bond Networks in Water: Reconstitution of Supramolecular Membranes. Journal of the American Chemical Society, 2001, 123, 6792-6800.	13.7	172
225	Formation of Uniform Fluorinated Gold Nanoparticles and Their Highly Ordered Hexagonally Packed Monolayer. Langmuir, 2001, 17, 2291-2293.	3.5	59
226	Supramolecular Holoenzymes:Â Activity Modulation of Endonuclease by the Use of Synthetic Bilayer Membranes as Regulatory Cofactors. Journal of the American Chemical Society, 2001, 123, 1764-1765.	13.7	7
227	Gelation of Ionic Liquids with a Low Molecular-Weight Gelator ShowingTgelabove 100 °C. Chemistry Letters, 2001, 30, 1154-1155.	1.3	64
228	Controlled Growth of Gold Nanoparticles in Organic Gels. Studies in Surface Science and Catalysis, 2001, 132, 525-528.	1.5	0
229	Self-Organized Superstructures of Fluorocarbon-Stabilized Silver Nanoparticles. Advanced Materials, 2001, 13, 140-142.	21.0	117
230	Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer. Langmuir, 2001, 17, 271-273.	3.5	135
231	Molecular Dispersion of Chains in the Mixed-Valence Complexes [M(en)2][MCl2(en)2] (M: Pt, Pd, Ni) and Anionic Amphiphiles in Organic Media. Angewandte Chemie - International Edition, 2000, 39, 389-391.	13.8	50
232	Towards Self-Assembling Inorganic Molecular Wires. Advanced Materials, 2000, 12, 1461-1463.	21.0	81
233	Organization of One-Dimensional Mixed-Valence Platinum Complexes at the Air-Water Interface and in Langmuir-Blodgett Films. Molecular Crystals and Liquid Crystals, 2000, 342, 103-110.	0.3	12
234	Self-Assembling Molecular Wires of Halogen-Bridged Platinum Complexes in Organic Media. Mesoscopic Supramolecular Assemblies Consisting of a Mixed Valent Pt(II)/Pt(IV) Complex and Anionic Amphiphiles. Inorganic Chemistry, 2000, 39, 2684-2689.	4.0	62

#	Article	IF	Citations
235	Preparation of Highly Positively Charged Silver Nanoballs and Their Stability. Langmuir, 2000, 16, 5218-5220.	3.5	73
236	Towards Self-Assembling Inorganic Molecular Wires. Advanced Materials, 2000, 12, 1461-1463.	21.0	3
237	Lanthanide Ion-Mediated Hydrolysis of DNA on Phosphate Bilayer Membrane. Chemistry Letters, 1999, 28, 29-30.	1.3	7
238	Spatially Controlled Synthesis of Protein/Inorganic Nano-assembly: Alternate Molecular Layers of Cytcand TiO2Nanoparticles. Chemistry Letters, 1999, 28, 1333-1334.	1.3	29
239	Organization of Hydrophilic Nanoparticles on a Hydrogel Surface and Their Gel-Assisted Transfer to Solid Substrates. Advanced Materials, 1998, 10, 1373-1376.	21.0	7
240	Supramolecular Membranes. Spontaneous Assembly of Aqueous Bilayer Membrane via Formation of Hydrogen Bonded Pairs of Melamine and Cyanuric Acid Derivatives. Journal of the American Chemical Society, 1998, 120, 4094-4104.	13.7	136
241	Supramolecular Assemblies Comprised of One-Dimensional Mixed Valence Platinum Complex and Anionic Amphiphiles in Organic Media. Chemistry Letters, 1998, 27, 695-696.	1.3	33
242	Protein Assembly on Solid Surfaces by Gel-Assisted Transfer (GAT) Technique. Chemistry Letters, 1998, 27, 821-822.	1.3	1
243	AFM Observation of Organogel Nanostructures on Graphite in the Gel-Assisted Transfer Technique. Chemistry Letters, 1998, 27, 967-968.	1.3	20
244	Organization of Hydrophilic Nanoparticles on a Hydrogel Surface and Their Gel-Assisted Transfer to Solid Substrates., 1998, 10, 1373.		1
245	Construction of Supramolecular Structures via. Hydrogen Bonds. Self-assembly of Complementary Hydrogen Bond-mediated Supermolecules in Aqueous and in Organic Media. Mesoscopic Supramolecular Assemblies Hyomen Kagaku, 1998, 19, 237-243.	0.0	0
246	Bilayer Formation in Ethanol from Dialkylammonium Amphiphile Appended with Nitroaniline Moiety. Chemistry Letters, 1997, 26, 1049-1050.	1.3	8
247	Deposition of photo-generated mixed-valent Fe(II)î—,Fe(III) complexes at the surface of Langmuir monolayers. Surface Science, 1997, 386, 245-248.	1.9	6
248	Formation of Stable Bilayer Membranes in Binary Aqueousâ^'Organic Media from a Dialkyl Amphiphile with a Highly Dipolar Head Group1. Journal of the American Chemical Society, 1996, 118, 5808-5809.	13.7	34
249	Selective Transport of Alkali Metal Ions Across Black Lipid Membranes (BLM) Composed of Ionophilic Amphiphiles. Chemistry Letters, 1996, 25, 521-522.	1.3	3
250	Calix[4]arene-Mediated Transport of Alkali Ions Across Synthetic Black Lipid Membranes (BLM). Bulletin of the Chemical Society of Japan, 1996, 69, 3681-3684.	3.2	17
251	Organic two-dimensional templates for the fabrication of inorganic nanostructures: Organic/inorganic superlattices. Advanced Materials, 1996, 8, 89-91.	21.0	91
252	Mesoscopic Sheets of a Cyano-Bridged CuNi Coordination Complex: Template Synthesis at the Interlayers of Cast Multibilayer Films. Angewandte Chemie International Edition in English, 1995, 33, 2483-2485.	4.4	19

#	Article	IF	Citations
253	Tube-like Nanostructures Composed of Networks of Complementary Hydrogen Bonds. Journal of the American Chemical Society, 1995, 117, 6360-6361.	13.7	165
254	Acid-Base Equilibria of Merocyanine Air-Water Monolayers. Langmuir, 1994, 10, 3743-3748.	3.5	18
255	Thermal Stability and Specific Dye Binding of a Hydrogen-Bond-Mediated Bilayer Membrane. Chemistry Letters, 1994, 23, 33-36.	1.3	17
256	Spectral Characteristics and Molecular Orientation of Azobenzene-Containing Hydrogen-Bond-Mediated Bilayer Membranes. Chemistry Letters, 1994, 23, 1399-1402.	1.3	15
257	Two-Dimensional Arrangement or Polynuclear Metal Complexes in the Interlayer of Multibilayer Cast Films. Chemistry Letters, 1994, 23, 1837-1840.	1.3	14
258	Effects of Chain Length and Polymer Complexation on the Aggregation and Orientation of Hemicyanine Monolayers. Langmuir, 1994, 10, 2743-2747.	3.5	6
259	Self-organization of bilayer membranes from amphiphilic networks of complementary hydrogen bonds. Journal of the American Chemical Society, 1993, 115, 4387-4388.	13.7	146
260	Template-Synthesis of Dimension-Diminished Lead Halide Clusters at the Interlayer of Multibilayer Cast Films. Chemistry Letters, 1993, 22, 941-944.	1.3	9
261	Mobile supported monolayers of ionic amphiphiles: variation of domain morphology via preadsorbed polyelectrolytes. Langmuir, 1992, 8, 1360-1365.	3.5	28
262	Controlled Formation of CdS Particles in Multibilayer Cast Films of Amphiphilic Cyclams. Chemistry Letters, 1991, 20, 2039-2042.	1.3	16
263	Laser-induced geometrical change of fluorescent traps in cast films of carbazole-containing bilayer membranes. Thin Solid Films, 1991, 202, 137-143.	1.8	1
264	Bilayer Membranes of Four-Chained Ammonium Amphiphiles. Chemistry Letters, 1990, 19, 29-32.	1.3	12
265	Molecular orientation of azobenzene amphiphiles in surface monolayers and Langmuir—Blodgett multilayers. Colloids and Surfaces, 1989, 38, 79-91.	0.9	22
266	Specific assemblies of the naphthalene unit in monolayers and the consequent control of energy transfer. Journal of the American Chemical Society, 1989, 111, 3758-3759.	13.7	33
267	Orientation and Distribution of the Carbazole Unit in Monolayers and Their Fluorescence Characteristics. Chemistry Letters, 1989, 18, 909-912.	1.3	8
268	Polymorphism in Bilayer Membranes of Novel Double-Chain Ammonium Amphiphiles. Chemistry Letters, 1988, 17, 1911-1914.	1.3	9
269	Molecular Orientation and Domain Formation in Surface Monolayers of Azobenzene-Containing Amphiphiles and Their Polyion Complexes. Chemistry Letters, 1988, 17, 827-830.	1.3	15
270	Electrical conductivity of organized chromophores in bilayer film. Synthetic Metals, 1987, 18, 861-866.	3.9	6

#	Article	IF	CITATIONS
271	SPECTRAL CHARACTERISTICS AND EFFICIENT ENERGY TRANSFER IN NAPHTHALENE-CONTAINING BILAYER MEMBRANES. Chemistry Letters, 1985, 14, 1817-1820.	1.3	8
272	Bilayer membranes of triple-chain ammonium amphiphiles. Journal of the American Chemical Society, 1984, 106, 1978-1983.	13.7	108
273	Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal–Organic Framework**. Angewandte Chemie, 0, , .	2.0	3