

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1689136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broad activation of the Parkin pathway induces synaptic mitochondrial deficits in early tauopathy. Brain, 2022, 145, 305-323.	7.6	16
2	Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiology of Disease, 2022, 162, 105582.	4.4	23
3	Broad activation of the PRKN pathway triggers synaptic failure by disrupting synaptic mitochondrial supply in early tauopathy. Autophagy, 2022, 18, 1472-1474.	9.1	4
4	The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy, 2021, 17, 4182-4201.	9.1	61
5	Understanding amphisomes. Biochemical Journal, 2021, 478, 1959-1976.	3.7	57
6	Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells, 2020, 9, 150.	4.1	151
7	Mitophagy coordination with retrograde transport ensures the integrity of synaptic mitochondria. Autophagy, 2020, 16, 1925-1927.	9.1	20
8	Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance. EMBO Reports, 2020, 21, e49801.	4.5	59
9	Introduction to the special issue on membrane trafficking in neurons. Developmental Neurobiology, 2018, 78, 167-169.	3.0	2
10	The Endolysosomal System and Proteostasis: From Development to Degeneration. Journal of Neuroscience, 2018, 38, 9364-9374.	3.6	94
11	Regulation of Synaptic Amyloid-β Generation through BACE1 Retrograde Transport in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 2639-2655.	3.6	58
12	Defective retrograde transport impairs autophagic clearance in Alzheimer disease neurons. Autophagy, 2017, 13, 982-984.	9.1	50
13	Releasing Syntaphilin Removes Stressed Mitochondria from Axons Independent of Mitophagy under Pathophysiological Conditions. Neuron, 2017, 94, 595-610.e6.	8.1	136
14	Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 57, 1087-1103.	2.6	176
15	Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation. Journal of Biological Chemistry, 2017, 292, 1679-1690.	3.4	54
16	SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E307-E316.	7.1	67
17	Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons. Human Molecular Genetics, 2017, 26, 4352-4366.	2.9	46
18	Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions. Autophagy, 2017, 13, 1792-1794.	9.1	25

QIAN CAI

#	Article	IF	CITATIONS
19	Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer's disease neurons. ELife, 2017, 6, .	6.0	114
20	Alterations in Mitochondrial Quality Control in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 24.	3.7	153
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Human Molecular Genetics, 2015, 24, 2938-2951.	2.9	214
23	Axonal autophagosomes use the ride-on service for retrograde transport toward the soma. Autophagy, 2015, 11, 1434-1436.	9.1	32
24	Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. Journal of Cell Biology, 2015, 209, 377-386.	5.2	202
25	Snapin-Mediated BACE1 Retrograde Transport Is Essential for Its Degradation in Lysosomes and Regulation of APP Processing in Neurons. Cell Reports, 2014, 6, 24-31.	6.4	51
26	Long time-lapse imaging reveals unique features of PARK2/Parkin-mediated mitophagy in mature cortical neurons. Autophagy, 2012, 8, 976-978.	9.1	20
27	Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is Essential for Dendrite Growth of Cortical Neurons. Cell Reports, 2012, 2, 42-51.	6.4	121
28	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
29	Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature Reviews Neuroscience, 2012, 13, 77-93.	10.2	678
30	Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons. Current Biology, 2012, 22, 545-552.	3.9	279
31	Uncovering the role of Snapin in regulating autophagy-lysosomal function. Autophagy, 2011, 7, 445-447.	9.1	24
32	Snapin-Regulated Late Endosomal Transport Is Critical for Efficient Autophagy-Lysosomal Function in Neurons. Neuron, 2010, 68, 73-86.	8.1	196
33	Molecular Motors and Synaptic Assembly. Neuroscientist, 2009, 15, 78-89.	3.5	32
34	Mitochondrial transport and docking in axons. Experimental Neurology, 2009, 218, 257-267.	4.1	87
35	Syntabulin–Kinesin-1 Family Member 5B-Mediated Axonal Transport Contributes to Activity-Dependent Presynaptic Assembly. Journal of Neuroscience, 2007, 27, 7284-7296.	3.6	132
36	Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. Journal of Cell Biology, 2005, 170, 959-969.	5.2	191

QIAN CAI

#	Article	IF	CITATIONS
37	The Role of Snapin in Neurosecretion: Snapin Knock-Out Mice Exhibit Impaired Calcium-Dependent Exocytosis of Large Dense-Core Vesicles in Chromaffin Cells. Journal of Neuroscience, 2005, 25, 10546-10555.	3.6	87
38	SNAP-29-mediated Modulation of Synaptic Transmission in CulturedHippocampalNeurons. Journal of Biological Chemistry, 2005, 280, 25769-25779.	3.4	78
39	Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature Cell Biology, 2004, 6, 941-953.	10.3	133