
Jeremy P Blaydes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1689011/publications.pdf Version: 2024-02-01

IEDEMV D RIAVDES

#	Article	IF	CITATIONS
1	Prognostic significance of crown-like structures to trastuzumab response in patients with primary invasive HER2 + breast carcinoma. Scientific Reports, 2022, 12, .	3.3	7
2	p53 is regulated by aerobic glycolysis in cancer cells by the CtBP family of NADH-dependent transcriptional regulators. Science Signaling, 2020, 13, .	3.6	28
3	Glycolysis, via NADHâ€dependent dimerisation of CtBPs, regulates hypoxiaâ€induced expression of CAIX and stemâ€like breast cancer cell survival. FEBS Letters, 2020, 594, 2988-3001.	2.8	5
4	Stem cell-like breast cancer cells with acquired resistance to metformin are sensitive to inhibitors of NADH-dependent CtBP dimerization. Carcinogenesis, 2019, 40, 871-882.	2.8	30
5	Glycolysis Regulates Human Embryonic Stem Cell Self-Renewal under Hypoxia through HIF-2α and the Glycolytic Sensors CTBPs. Stem Cell Reports, 2019, 12, 728-742.	4.8	36
6	HPV, tumour metabolism and novel target identification in head and neck squamous cell carcinoma. British Journal of Cancer, 2019, 120, 356-367.	6.4	41
7	The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget, 2018, 9, 23274-23288.	1.8	9
8	Novel spliceâ€switching oligonucleotide promotes <i>BRCA1</i> aberrant splicing and susceptibility to PARP inhibitor action. International Journal of Cancer, 2017, 140, 1564-1570.	5.1	19
9	The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis, 2016, 5, e215-e215.	4.9	5
10	Cancerâ€associated fibroblasts predict poor outcome and promote periostinâ€dependent invasion in oesophageal adenocarcinoma. Journal of Pathology, 2015, 235, 466-477.	4.5	154
11	Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-l-proline type II helix conformation. Organic and Biomolecular Chemistry, 2015, 13, 4562-4569.	2.8	5
12	Senescence induction in renal carcinoma cells by Nutlin-3: a potential therapeutic strategy based on MDM2 antagonism. Cancer Letters, 2014, 353, 211-219.	7.2	18
13	Transcription of Clickâ€Linked DNA in Human Cells. Angewandte Chemie - International Edition, 2014, 53, 2362-2365.	13.8	64
14	Innenrücktitelbild: Transcription of Click-Linked DNA in Human Cells (Angew. Chem. 9/2014). Angewandte Chemie, 2014, 126, 2543-2543.	2.0	1
15	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	5.0	320
16	A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chemical Science, 2013, 4, 3046.	7.4	56
17	Targeting Tumour Proliferation with a Smallâ€Molecule Inhibitor of AICAR Transformylase Homodimerization. ChemBioChem, 2012, 13, 1628-1634.	2.6	62
18	Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance. Biology of the Cell, 2011, 103, 1-19.	2.0	55

JEREMY P BLAYDES

#	Article	IF	CITATIONS
19	Down-Regulation of DNA Mismatch Repair Enhances Initiation and Growth of Neuroblastoma and Brain Tumour Multicellular Spheroids. PLoS ONE, 2011, 6, e28123.	2.5	7
20	CtBPs promote mitotic fidelity through their activities in the cell nucleus. Oncogene, 2011, 30, 1272-1280.	5.9	9
21	Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4. Molecular Cancer, 2011, 10, 72.	19.2	21
22	A comparison of primary oesophageal squamous epithelial cells with HETâ€1A in organotypic culture. Biology of the Cell, 2010, 102, 635-644.	2.0	37
23	HDMX-L Is Expressed from a Functional p53-responsive Promoter in the First Intron of the HDMX Gene and Participates in an Autoregulatory Feedback Loop to Control p53 Activity. Journal of Biological Chemistry, 2010, 285, 29111-29127.	3.4	45
24	The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biology and Therapy, 2010, 10, 728-735.	3.4	72
25	Cooperation between MDM2 and MDMX in the Regulation of p53. Molecular Biology Intelligence Unit, 2010, , 85-99.	0.2	1
26	CtBPs Promote Cell Survival through the Maintenance of Mitotic Fidelity. Molecular and Cellular Biology, 2009, 29, 4539-4551.	2.3	46
27	MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene, 2008, 27, 1645-1649.	5.9	46
28	Dissection of the functional interaction between p53 and the embryonic protoâ€oncoprotein PAX3. FEBS Letters, 2007, 581, 5831-5835.	2.8	13
29	GC-selective DNA-binding antibiotic, Mithramycin A, reveals multiple points of control in the regulation of Hdm2 protein synthesis. Oncogene, 2006, 25, 4183-4193.	5.9	10
30	The mechanisms of regulation of Hdm2 protein level by serum growth factors. FEBS Letters, 2006, 580, 300-304.	2.8	13
31	Role of the unique N-terminal domain of CtBP2 in determining the subcellular localisation of CtBP family proteins. BMC Cell Biology, 2006, 7, 35.	3.0	31
32	C-terminal binding proteins: Emerging roles in cell survival and tumorigenesis. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 879-888.	4.9	55
33	Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers. BMC Cancer, 2006, 6, 80.	2.6	37
34	Immunoglobulin Heavy Chain Locus Events and Expression of Activation-Induced Cytidine Deaminase in Epithelial Breast Cancer Cell Lines. Cancer Research, 2006, 66, 3996-4000.	0.9	119
35	MEK-ERK Signaling Controls Hdm2 Oncoprotein Expression by Regulating hdm2 mRNA Export to the Cytoplasm. Journal of Biological Chemistry, 2005, 280, 16651-16658.	3.4	51
36	Hdm2 Recruits a Hypoxia-Sensitive Corepressor to Negatively Regulate p53-Dependent Transcription. Current Biology, 2003, 13, 1234-1239.	3.9	65

JEREMY P BLAYDES

#	Article	IF	CITATIONS
37	Hdm2 Recruits the Hypoxia Sensitive Transcriptional Co-Repressor CtBP2 to Negatively Regulate p53-Dependant Transcription. Clinical Science, 2003, 104, 29P-29P.	0.0	0
38	p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells. Cancer Research, 2003, 63, 2616-23.	0.9	93
39	Stoichiometric Phosphorylation of Human p53 at Ser315Stimulates p53-dependent Transcription. Journal of Biological Chemistry, 2001, 276, 4699-4708.	3.4	84
40	Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene, 2000, 19, 3829-3839.	5.9	62
41	Posttranslational Modifications of p53 in Replicative Senescence Overlapping but Distinct from Those Induced by DNA Damage. Molecular and Cellular Biology, 2000, 20, 2803-2808.	2.3	187
42	The Development and Use of Phospho-Specific Antibodies to Study Protein Phosphorylation. , 2000, 99, 177-189.		30
43	Activation of p53 Protein Function in Response to Cellular Irradiation. , 1999, 113, 591-598.		0
44	Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene, 1999, 18, 6305-6312.	5.9	41
45	The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene, 1998, 16, 3317-3322.	5.9	69
46	DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene, 1998, 17, 1045-1052.	5.9	110
47	The influence of cell context on the selection pressure for p53 mutation in human cancer. Carcinogenesis, 1998, 19, 29-36.	2.8	29
48	Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene, 1997, 14, 1859-1868.	5.9	75
49	Loss of responsiveness to transforming growth factor \hat{I}^2 (TGF \hat{I}^2) is tightly linked to tumorigenicity in a model of thyroid tumour progression. , 1996, 65, 525-530.		18
50	Loss of responsiveness to transforming growth factor β (TGFβ) is tightly linked to tumorigenicity in a model of thyroid tumour progression. International Journal of Cancer, 1996, 65, 525-530.	5.1	1
51	Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene, 1996, 13, 2097-104.	5.9	118
52	Evasion of p53-mediated growth control occurs by three alternative mechanisms in transformed thyroid epithelial cells. Oncogene, 1995, 10, 49-59.	5.9	26
53	Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Cancer Research, 1995, 55, 2404-9.	0.9	62
54	Interaction between p53 and TGF beta 1 in control of epithelial cell proliferation. Oncogene, 1995, 10, 307-17.	5.9	24

#	Article	IF	CITATIONS
55	Stepwise transformation of primary thyroid epithelial cells by a mutant Ha-ras oncogene: An in vitro model of tumor progression. Molecular Carcinogenesis, 1992, 6, 129-139.	2.7	39
56	A potential motor neurone-specific monoclonal antibody (MN-1). Biochemical Society Transactions, 1991, 19, 338S-338S.	3.4	0