Mustafa Tuzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1687895/publications.pdf

Version: 2024-02-01

257 papers 19,640 citations

79 h-index 128 g-index

257 all docs

257 docs citations

times ranked

257

13079 citing authors

#	Article	IF	CITATIONS
1	Simultaneous removal of polyaromatic hydrocarbons from water using polymer modified carbon. Biomass Conversion and Biorefinery, 2024, 14, 567-576.	2.9	15
2	Air-Assisted Alkanol-Based Nanostructured Supramolecular Liquid–Liquid Microextraction for Extraction and Spectrophotometric Determination of Morin in Fruit and Beverage Samples. Food Analytical Methods, 2022, 15, 243-251.	1.3	6
3	Synthesis of polystyrene-polyricinoleic acid copolymer containing silver nano particles for dispersive solid phase microextraction of molybdenum in water and food samples. Food Chemistry, 2022, 369, 130973.	4.2	18
4	Synthesis of carbon modified with polymer of diethylenetriamine and trimesoyl chloride for the dual removal of Hg (II) and methyl mercury ([CH3Hg]+) from wastewater: Theoretical and experimental analyses. Materials Chemistry and Physics, 2022, 277, 125501.	2.0	22
5	Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Analytica Chimica Acta, 2022, 1199, 339570.	2.6	100
6	Application of microcrystalline cellulose as an efficient and cheap sorbent for the extraction of metoprolol from plasma and wastewater before HPLC–MS/MS determination. Biomedical Chromatography, 2022, , e5371.	0.8	3
7	Factorial design, physical studies and rapid arsenic adsorption using newly prepared polymer modified perlite adsorbent. Chemical Engineering Research and Design, 2022, 183, 181-191.	2.7	31
8	Assessment of arsenic in water, rice and honey samples using new and green vortex-assisted liquid phase microextraction procedure based on deep eutectic solvent: Multivariate study. Microchemical Journal, 2022, 179, 107541.	2.3	41
9	Inâ€situ sorbent formation for the extraction of pesticides from honey. Journal of Separation Science, 2022, 45, 2652-2662.	1.3	3
10	Effective antimony removal from wastewaters using polymer modified sepiolite: Isotherm kinetic and thermodynamic analysis. Chemical Engineering Research and Design, 2022, 184, 215-223.	2.7	30
11	Synthesized of a novel xanthate functionalized polypropylene as adsorbent for dispersive solid phase microextraction of caffeine using orbital shaker in mixed beverage matrices. Food Chemistry, 2022, 393, 133464.	4.2	11
12	Synthesized of poly(vinyl benzyl dithiocarbonate-dimethyl amino ethyl methacrylate) block copolymer as adsorbent for the vortex-assisted dispersive solid phase microextraction of patulin from apple products and dried fruits. Food Chemistry, 2022, 395, 133607.	4.2	11
13	A New Green In Situ Effervescent CO2-Table-Induced Switchable Hydrophilicity Solvent Extraction Method of Rhodamine B in Food and Soft Drink Samples. Journal of AOAC INTERNATIONAL, 2021, 104, 384-388.	0.7	5
14	Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques. Food Chemistry, 2021, 344, 128706.	4.2	26
15	Facile synthesis of zinc oxide nanoparticles loaded activated carbon as an eco-friendly adsorbent for ultra-removal of malachite green from water. Environmental Technology and Innovation, 2021, 21, 101305.	3.0	94
16	Development of sensitive and accurate solid-phase microextraction procedure for preconcentration of As(III) ions in real samples. Scientific Reports, 2021, 11, 5481.	1.6	9
17	Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr(VI) in waters and total chromium in beverages and vegetables. Journal of Molecular Liquids, 2021, 329, 115556.	2.3	32
18	Evaluation of poly(ethylene diamine-trimesoyl chloride)-modified diatomite as efficient adsorbent for removal of rhodamine B from wastewater samples. Environmental Science and Pollution Research, 2021, 28, 55655-55666.	2.7	25

#	Article	IF	Citations
19	pH-induced homogeneous liquid–liquid microextraction method based on new switchable deep eutectic solvent for the extraction of three antiepileptic drugs from breast milk. Bioanalysis, 2021, 13, 1087-1099.	0.6	7
20	Development and characterization of bentonite-gum arabic composite as novel highly-efficient adsorbent to remove thorium ions from aqueous media. Cellulose, 2021, 28, 10321-10333.	2.4	17
21	Air-assisted liquid-liquid microextraction of total 3-monochloropropane-1,2-diol from refined edible oils based on a natural deep eutectic solvent and its determination by gas chromatography-mass spectrometry. Journal of Chromatography A, 2021, 1656, 462559.	1.8	19
22	A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chemistry, 2021, 359, 129923.	4.2	38
23	A simple and green ultrasound liquid–liquid microextraction method based on low viscous hydrophobic deep eutectic solvent for the preconcentration and separation of selenium in water and food samples prior to HG-AAS detection. Food Chemistry, 2021, 364, 130371.	4.2	40
24	Selective electromembrane extraction and sensitive colorimetric detection of copper(II). Zeitschrift Fur Physikalische Chemie, 2021, 235, 1113-1128.	1.4	13
25	Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surfaces and Interfaces, 2021, 27, 101504.	1.5	15
26	In-situ formation/decomposition of deep eutectic solvent during solidification of floating organic droplet-liquid-liquid microextraction method for the extraction of some antibiotics from honey prior to high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2021, 1660, 462653.	1.8	50
27	Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Mikrochimica Acta, 2021, 188, 434.	2.5	38
28	Green and innovative technique develop for the determination of vanadium in different types of water and food samples by eutectic solvent extraction method. Food Chemistry, 2020, 306, 125638.	4.2	50
29	Effect of Cu, Fe, Mn, Ni, and Zn and Bioaccessibilities in the Hazelnuts Growing in Sakarya, Turkey using In-Vitro Gastrointestinal Extraction Method. Biological Trace Element Research, 2020, 194, 596-602.	1.9	3
30	Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Waste Management, 2020, 103, 352-360.	3.7	44
31	Synthesis, characterization and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media. Chemical Engineering Research and Design, 2020, 163, 76-84.	2.7	48
32	Usage of the newly synthesized poly(3-hydroxy butyrate)-b-poly(vinyl benzyl xanthate) block copolymer for vortex-assisted solid-phase microextraction of cobalt (II) and nickel (II) in canned foodstuffs. Food Chemistry, 2020, 321, 126690.	4.2	20
33	Interfacial polymerization of trimesoyl chloride with melamine and palygorskite for efficient uranium ions ultra-removal. Chemical Engineering Research and Design, 2020, 159, 353-361.	2.7	59
34	Poly(styrene)-co-2-vinylpyridine copolymer as a novel solid-phase adsorbent for determination of manganese and zinc in foods and vegetables by FAAS. Food Chemistry, 2020, 333, 127504.	4.2	22
35	Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements. Food Chemistry, 2020, 321, 126737.	4.2	60
36	Synthesis of silica nanoparticles grafted with copolymer of acrylic acrylamide for ultra-removal of methylene blue from aquatic solutions. European Polymer Journal, 2020, 130, 109698.	2.6	87

3

#	Article	IF	CITATIONS
37	Influential bio-removal of mercury using Lactarius acerrimus macrofungus as novel low-cost biosorbent from aqueous solution: Isotherm modeling, kinetic and thermodynamic investigations. Materials Chemistry and Physics, 2020, 249, 123168.	2.0	15
38	Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. Journal of Molecular Liquids, 2019, 291, 111299.	2.3	64
39	Carbon nanotubes grafted with poly(trimesoyl, m-phenylenediamine) for enhanced removal of phenol. Journal of Environmental Management, 2019, 252, 109660.	3.8	34
40	Magnetic vermiculite-modified by poly(trimesoyl chloride-melamine) as a sorbent for enhanced removal of bisphenol A. Journal of Environmental Chemical Engineering, 2019, 7, 103436.	3.3	38
41	Multi-element determination in some foods and beverages using silica gel modified with 1-phenylthiosemicarbazide. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1667-1676.	1.1	17
42	Chromium Speciation in Water Samples by Loading a New Sulfide-Containing Biodegradable Polymer Adsorbent in Tip of the Syringe System. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	9
43	A newly synthesized graft copolymer for magnetic solid phase microextraction of total selenium and its electrothermal atomic absorption spectrometric determination in food and water samples. Food Chemistry, 2019, 284, 1-7.	4.2	46
44	Separation, enrichment and spectrophotometric determination of erythrosine (E127) in drug, cosmetic and food samples by heat-induced homogeneous liquid–liquid microextraction method. International Journal of Environmental Analytical Chemistry, 2019, 99, 1135-1147.	1.8	23
45	Development of tetraethylene pentamine functionalized multi-wall carbon nanotubes as a new adsorbent in a syringe system for removal of bisphenol A by using multivariate optimization techniques. Microchemical Journal, 2019, 147, 1147-1154.	2.3	25
46	Developed of a Green Water Switchable Liquid–Liquid Microextraction Method for Assessment of Selenium in Food and Soft Drink Samples by Using Hydride Generation Atomic Absorption Spectrometry. Food Analytical Methods, 2019, 12, 1298-1307.	1.3	10
47	Ultrasound-Assisted Ionic Liquid-Dispersive Liquid–Liquid of Curcumin in Food Samples Microextraction and Its Spectrophotometric Determination. Journal of AOAC INTERNATIONAL, 2019, 102, 217-221.	0.7	29
48	A new robust, deep eutectic-based floating organic droplets microextraction method for determination of lead in a portable syringe system directly couple with FAAS. Talanta, 2019, 196, 71-77.	2.9	53
49	A new portable switchable hydrophilicity microextraction method for determination of vanadium in microsampling micropipette tip syringe system couple with ETAAS. Talanta, 2019, 194, 991-996.	2.9	42
50	Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis. Journal of Environmental Management, 2018, 211, 323-333.	3.8	179
51	Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples. Talanta, 2018, 184, 115-121.	2.9	37
52	A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry. Journal of Molecular Liquids, 2018, 259, 220-226.	2.3	81
53	Ultrasonic assisted deep eutectic solvent liquid–liquid microextraction using azadipyrromethene dye as complexing agent for assessment of chromium species in environmental samples by electrothermal atomic absorption spectrometry. Applied Organometallic Chemistry, 2018, 32, e4319.	1.7	20
54	Solid-Phase Microextraction and Determination of Tin Species in Beverages and Food Samples by Using Poly (ε-Caprolactone-b-4-Vinyl Benzyl-g-Dimethyl Amino Ethyl Methacrylate) Polymer in Syringe System: a Multivariate Study. Food Analytical Methods, 2018, 11, 2538-2546.	1.3	6

#	Article	IF	CITATIONS
55	A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry. Food Chemistry, 2018, 253, 277-283.	4.2	95
56	A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chemistry, 2018, 245, 380-384.	4.2	51
57	Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: Multivariate study. Talanta, 2018, 178, 588-593.	2.9	81
58	A new portable micropipette tip-syringe based solid phase microextraction for the determination of vanadium species in water and food samples. Journal of Industrial and Engineering Chemistry, 2018, 57, 188-192.	2.9	37
59	Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. Journal of Environmental Management, 2018, 206, 170-177.	3.8	195
60	Novel ultrasonicâ€assisted deep eutectic solventâ€based dispersive liquid–liquid microextraction for determination of vanadium in food samples by electrothermal atomic absorption spectrometry: A multivariate study. Applied Organometallic Chemistry, 2018, 32, e4144.	1.7	24
61	Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Materials Chemistry and Physics, 2018, 220, 313-321.	2.0	170
62	Determination of Selenium and Arsenic Ions in Edible Mushroom Samples by Novel Chloride–Oxalic Acid Deep Eutectic Solvent Extraction Using Graphite Furnace-Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2018, 101, 593-600.	0.7	13
63	Effective uranium biosorption by macrofungus (Russula sanguinea) from aqueous solution: equilibrium, thermodynamic and kinetic studies. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 1387-1397.	0.7	19
64	Choline Chloride–Oxalic Acid as a Deep Eutectic Solvent–Based Innovative Digestion Method for the Determination of Selenium and Arsenic in Fish Samples. Journal of AOAC INTERNATIONAL, 2018, 101, 1183-1189.	0.7	19
65	Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. Journal of Environmental Chemical Engineering, 2017, 5, 1079-1088.	3 . 3	155
66	Determination of Arsenic in Water Samples by Using a Green Hydrophobic-Hydrophilic Switchable Liquid-Solid Dispersive Microextraction Method. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	12
67	Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae () Tj ETQq $1\ 1$	0.784314	4 rgBT/Overl
68	Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. Journal of Environmental Chemical Engineering, 2017, 5, 2853-2860.	3. 3	136
69	Application of chitosanâ€modified pumice for antimony adsorption from aqueous solution. Environmental Progress and Sustainable Energy, 2017, 36, 1587-1596.	1.3	17
70	A simple and sensitive vortex-assisted ionic liquid-dispersive microextraction and spectrophotometric determination of selenium in food samples. Food Chemistry, 2017, 232, 98-104.	4.2	40
71	A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 264-269.	1.3	32
72	Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chemical Engineering Research and Design, 2017, 122, 151-163.	2.7	275

#	Article	IF	Citations
73	A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine. Food Chemistry, 2017, 221, 1394-1399.	4.2	35
74	Ultrasound assisted deep eutectic solvent based on dispersive liquid liquid microextraction of arsenic speciation in water and environmental samples by electrothermal atomic absorption spectrometry. Journal of Molecular Liquids, 2017, 242, 441-446.	2.3	69
75	Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples. Talanta, 2017, 175, 352-358.	2.9	103
76	Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan. Environmental Science and Pollution Research, 2017, 24, 17731-17740.	2.7	8
77	Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chemical Engineering Research and Design, 2017, 117, 218-227.	2.7	262
78	Vortex-Assisted Solidified Floating Organic Drop Microextraction of Molybdenum in Beverages and Food Samples Coupled with Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2017, 10, 219-226.	1.3	14
79	Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 2017, 307, 230-238.	6.6	332
80	Spectrophotometric detection of rhodamine B in tap water, lipstick, rouge, and nail polish samples after supramolecular solvent microextraction. Turkish Journal of Chemistry, 2017, 41, 987-994.	0.5	26
81	Evaluation of Mercury in Environmental Samples by a Supramolecular Solvent–Based Dispersive Liquid–Liquid Microextraction Method Before Analysis by a Cold Vapor Generation Technique. Journal of AOAC INTERNATIONAL, 2017, 100, 782-788.	0.7	11
82	Simple and Rapid Dual-Dispersive Liquid–Liquid Microextraction as an Innovative Extraction Method for Uranium in Real Water Samples Prior to the Determination of Uranium by a Spectrophotometric Technique. Journal of AOAC INTERNATIONAL, 2017, 100, 1848-1853.	0.7	8
83	Determination of Total Arsenic in Water and Food Samples by Pressure-induced Ionic Liquid-based Dispersive Liquid-Liquid Microextraction Method Prior to Analysis by Hydride Generation Atomic Absorption Spectrometry. Atomic Spectroscopy, 2017, 38, 57-64.	0.4	4
84	Determination of uranium in water samples with chromogenic reagent 4-(2-thiazolylazo) resorcinol after ionic liquid based dispersive liquid liquid microextraction. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309, 453.	0.7	3
85	Solidified floating organic drop microextraction for speciation of Se (IV) and Se (VI) in water samples prior to electrothermal atomic absorption spectrometric detection. Turkish Journal of Chemistry, 2016, 40, 1012-1018.	0.5	5
86	Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. Journal of Molecular Liquids, 2016, 219, 937-945.	2.3	144
87	Simple and green switchable dispersive liquid–liquid microextraction of cadmium in water and food samples. RSC Advances, 2016, 6, 28767-28773.	1.7	31
88	Supramolecular solvent microextraction of Sudan blue II in environmental samples prior to its spectrophotometric determination. International Journal of Environmental Analytical Chemistry, 2016, 96, 568-575.	1.8	13
89	Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples. Food Chemistry, 2016, 210, 115-120.	4.2	94
90	Determination of Mercury in Environmental Samples by Using Water Exchangeable Liquid-Liquid Microextraction as Green Extraction Method Couple with Cold Vapor Technique. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	7

#	Article	IF	Citations
91	Inorganic arsenic speciation in water samples by miniaturized solid phase microextraction using a new polystyrene polydimethyl siloxane polymer in micropipette tip of syringe system. Talanta, 2016, 161, 450-458.	2.9	50
92	Solid phase extraction of uranium on a new brush type graft copolymer and spectrophotometric determination of its in water samples. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1255-1263.	0.7	4
93	Dispersive ionic liquid microextraction of aluminium from environmental water samples by effervescent generation of carbon dioxide. International Journal of Environmental Analytical Chemistry, 2016, 96, 729-738.	1.8	6
94	Flame Atomic Absorption Spectrometric Determination of Gold After Solid-Phase Extraction of Its 2-Aminobenzothiazole Complex on Diaion SP-207. Journal of AOAC INTERNATIONAL, 2016, 99, 534-538.	0.7	10
95	Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla, Turkey. Toxicology and Industrial Health, 2016, 32, 507-516.	0.6	50
96	A new green switchable hydrophobic–hydrophilic transition dispersive solid–liquid microextraction of selenium in water samples. Analytical Methods, 2016, 8, 2756-2763.	1.3	20
97	Development of novel simultaneous single step and multistep cloud point extraction method for silver, cadmium and nickel in water samples. Journal of Industrial and Engineering Chemistry, 2016, 35, 93-98.	2.9	31
98	Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages. Food Chemistry, 2015, 188, 619-624.	4.2	97
99	Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2015, 98, 1733-1738.	0.7	5
100	Determination of zirconium in water, dental materials and artificial saliva after surfactant assisted dispersive ionic liquid based microextraction. RSC Advances, 2015, 5, 107872-107879.	1.7	8
101	Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls. Environmental Science and Pollution Research, 2015, 22, 7705-7715.	2.7	15
102	Dispersive liquid–liquid microextraction of lead(II) as 5-(4-dimethylaminobenzylidene) rhodanine chelates from food and water samples. Environmental Monitoring and Assessment, 2015, 187, 9.	1.3	18
103	Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples. Food Chemistry, 2015, 177, 320-324.	4.2	66
104	Determination of Lead, Copper, and Iron in Cosmetics, Water, Soil, and Food Using Polyhydroxybutyrate-B-polydimethyl Siloxane Preconcentration and Flame Atomic Absorption Spectrometry. Analytical Letters, 2015, 48, 1163-1179.	1.0	46
105	Determination of Copper in Food and Water by Dispersive Liquid-Liquid Microextraction and Flame Atomic Absorption Spectrometry. Analytical Letters, 2015, 48, 1738-1750.	1.0	24
106	Adsorption Characteristics of Mercury(II) lons from Aqueous Solution onto Chitosan-Coated Diatomite. Industrial & Diatomite. Diatom	1.8	78
107	Separation and Preconcentration of Sudan Blue II Using Membrane Filtration and UV-Visible Spectrophotometric Determination in River Water and Industrial Wastewater Samples. Journal of AOAC INTERNATIONAL, 2015, 98, 213-217.	0.7	12
108	Ultrasonication ionic liquid-based dispersive liquid–liquid microextraction of palladium in water samples and determination of microsampler system-assisted FAAS. Desalination and Water Treatment, 2015, 53, 2686-2691.	1.0	16

#	Article	IF	CITATIONS
109	Solid-phase extraction of iridium from soil and water samples by using activated carbon cloth prior to its spectrophotometric determination. Environmental Monitoring and Assessment, 2015, 187, 501.	1.3	11
110	Simultaneous ICP-OES determination of trace metals in water and food samples after their preconcentration on silica gel functionalized with N-(2-aminoethyl)-2,3-dihydroxybenzaldimine. Journal of Industrial and Engineering Chemistry, 2015, 27, 245-250.	2.9	47
111	Carrier element-free coprecipitation and speciation of inorganic tin in beverage samples and total tin in food samples using N-Benzoyl-N,N-diisobutylthiourea and its determination by graphite furnace atomic absorption spectrometry. LWT - Food Science and Technology, 2015, 63, 1091-1096.	2.5	21
112	Investigation of the Influence of Selected Soil and Plant Properties from Sakarya, Turkey, on the Bioavailability of Trace Elements by Applying an In Vitro Digestion Model. Biological Trace Element Research, 2015, 168, 276-285.	1.9	23
113	Dispersive liquid–liquid microextraction–spectrophotometry combination for determination of rhodamine B in food, water, and environmental samples. Desalination and Water Treatment, 2015, 55, 2103-2108.	1.0	22
114	Speciation of Chromium in Natural Waters, Tea, and Soil with Membrane Filtration Flame Atomic Absorption Spectrometry. Analytical Letters, 2015, 48, 2258-2271.	1.0	22
115	Ultrasound-assisted ionic liquid-based dispersive liquid–liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV–visible spectrophotometry. Environmental Monitoring and Assessment, 2015, 187, 203.	1.3	47
116	A multivariate study of solid phase extraction of beryllium(II) using human hair as adsorbent prior to its spectrophotometric detection. Desalination and Water Treatment, 2015, 55, 1088-1095.	1.0	8
117	Ionic liquid dispersive microextraction and spectrophotometric determination of trace uranyl ion in water samples. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 385-392.	0.7	4
118	Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry. Food Chemistry, 2015, 172, 161-165.	4.2	52
119	Speciation of chromium by the combination of dispersive liquid-liquid microextraction and microsample injection flame atomic absorption spectrometry. Turkish Journal of Chemistry, 2014, 38, 173-181.	0.5	17
120	Spectrophotometric Detection of Rhodamine B after Separation-Enrichment by Using Multi-walled Carbon Nanotubes. Journal of AOAC INTERNATIONAL, 2014, 97, 1459-1462.	0.7	23
121	Assessment of trace metal concentrations in muscle tissue of certain commercially available fish species from Kayseri, Turkey. Environmental Monitoring and Assessment, 2014, 186, 4619-4628.	1.3	21
122	Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples. Food Chemistry, 2014, 152, 75-80.	4.2	64
123	Cd(II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 2014, 88-89, 63-72.	2.6	80
124	Sequential Extraction Procedure for the Determination of Some Trace Elements in Fertilizer Samples. Journal of AOAC INTERNATIONAL, 2014, 97, 1034-1038.	0.7	10
125	Solid-Phase Extraction of Copper(II) in Water and Food Samples Using Silica Gel Modified with bis(3-Aminopropyl)amine and Determination by Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2014, 97, 1137-1142.	0.7	8
126	Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2014, 812, 59-64.	2.6	39

#	Article	IF	Citations
127	Preconcentration and speciation of vanadium by three phases liquid–liquid microextraction prior to electrothermal atomic absorption spectrometry. Journal of Industrial and Engineering Chemistry, 2014, 20, 1825-1829.	2.9	31
128	SPECTROPHOTOMETRIC DETERMINATION OF SUDAN BLUE II IN ENVIRONMENTAL SAMPLES AFTER DISPERSIVE LIQUID-LIQUID MICROEXTRACTION. Quimica Nova, 2014, , .	0.3	1
129	Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 1441.	1.6	62
130	Separationâ€preconcentration of <scp>C</scp> u, <scp>C</scp> d, <scp>P</scp> b and <scp>N</scp> i in various water and food samples on <scp>S</scp> epabeads <scp>SP</scp> â€207. International Journal of Food Science and Technology, 2013, 48, 1201-1207.	1.3	16
131	Arsenic in water, food and cigarettes: A cancer risk to Pakistani population. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1776-1782.	0.9	7
132	Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous and Mesoporous Materials, 2013, 170, 155-163.	2.2	82
133	Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes. Talanta, 2013, 116, 205-209.	2.9	51
134	Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry. Talanta, 2013, 107, 162-166.	2.9	40
135	Solidâ€phase extraction of lead and copper on a polyhydroxybutyrateâ€bâ€polydimethyl siloxane (<scp>PHB</scp> â€bâ€ <scp>PDMS</scp>) block copolymer disc and flame atomic absorption spectrometric determination of them in water and food samples. International Journal of Food Science and Technology, 2013, 48, 2384-2390.	1.3	7
136	Evaluation of metal contents of household detergent samples from Turkey by flame atomic absorption spectrometry. Environmental Monitoring and Assessment, 2013, 185, 9663-9668.	1.3	9
137	The Use of a Sequential Extraction Procedure for Heavy Metal Analysis of House Dusts by Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2013, 96, 166-170.	0.7	10
138	Determination of Heavy Metals and Their Speciation in Street Dusts by Inductively Coupled Plasma-Optical Emission Spectrometry after a Community Bureau of Reference Sequential Extraction Procedure. Journal of AOAC INTERNATIONAL, 2013, 96, 864-869.	0.7	9
139	Separation and Determination of Copper in Bottled Water Samples by Combination of Dispersive Liquidâ€"Liquid Microextraction and Microsample Introduction Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2013, 96, 1435-1439.	0.7	10
140	Cloud Point Extraction of Copper, Lead, Cadmium, and Iron Using 2,6-Diamino-4-Phenyl-1,3,5-Triazine and Nonionic Surfactant, and Their Flame Atomic Absorption Spectrometric Determination in Water and Canned Food Samples. Journal of AOAC INTERNATIONAL, 2012, 95, 1170-1175.	0.7	23
141	Trace metal concentrations in cigarette brands commonly available in Turkey: relation with human health. Toxicological and Environmental Chemistry, 2012, 94, 1893-1901.	0.6	11
142	Equilibrium, Thermodynamic and Kinetic Studies on Biosorption of Mercury from Aqueous Solution by Macrofungus (<i>Lycoperdon perlatum</i>) Biomass. Separation Science and Technology, 2012, 47, 1167-1176.	1.3	7
143	Membrane filtration of Sudan orange G on a cellulose acetate membrane filter for separation–preconcentration and spectrophotometric determination in water, chili powder, chili sauce and tomato sauce samples. Food and Chemical Toxicology, 2012, 50, 2709-2713.	1.8	44
144	Antimony(III) Adsorption from Aqueous Solution Using Raw Perlite and Mn-Modified Perlite: Equilibrium, Thermodynamic, and Kinetic Studies. Industrial & Engineering Chemistry Research, 2012, 51, 6877-6886.	1.8	70

#	Article	IF	CITATIONS
145	Determination of toxic and essential elements in sunflower honey from Thrace Region, Turkey. International Journal of Food Science and Technology, 2012, 47, 107-113.	1.3	26
146	Column solidâ€phase extraction of sunset yellow and spectrophotometric determination of its use in powdered beverage and confectionery products. International Journal of Food Science and Technology, 2012, 47, 1253-1258.	1.3	40
147	Determination of copper, lead and iron in water and food samples after column solid phase extraction using 1-phenylthiosemicarbazide on Dowex Optipore L-493 resin. Food and Chemical Toxicology, 2011, 49, 458-463.	1.8	54
148	Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food and Chemical Toxicology, 2011, 49, 1183-1187.	1.8	126
149	Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry. Food and Chemical Toxicology, 2011, 49, 1633-1637.	1.8	41
150	Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 2011, 49, 1796-1799.	1.8	187
151	Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES. Food and Chemical Toxicology, 2011, 49, 2800-2807.	1.8	132
152	Assessment of trace elements in animal tissues from Turkey. Environmental Monitoring and Assessment, 2011, 182, 423-430.	1.3	6
153	Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chemical Engineering Journal, 2011, 167, 155-161.	6.6	144
154	Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chemical Engineering Journal, 2010, 158, 200-206.	6.6	199
155	Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry. Journal of Hazardous Materials, 2010, 176, 1032-1037.	6.5	70
156	Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation–atomic absorption spectrometry combination. Journal of Hazardous Materials, 2010, 173, 773-777.	6.5	59
157	Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chemical Engineering Journal, 2010, 162, 521-527.	6.6	135
158	Biosorption of antimony from aqueous solution by lichen (Physcia tribacia) biomass. Chemical Engineering Journal, 2010, 163, 382-388.	6.6	71
159	Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food and Chemical Toxicology, 2010, 48, 41-46.	1.8	81
160	Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey. Food and Chemical Toxicology, 2010, 48, 865-870.	1.8	141
161	Determination of trace metals in different fish species and sediments from the River Yeşilırmak in Tokat, Turkey. Food and Chemical Toxicology, 2010, 48, 1383-1392.	1.8	139
162	Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food and Chemical Toxicology, 2010, 48, 1393-1398.	1.8	91

#	Article	IF	CITATIONS
163	A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chemical Toxicology, 2010, 48, 1399-1404.	1.8	250
164	Trace element concentrations of some pet foods commercially available in Turkey. Food and Chemical Toxicology, 2010, 48, 2833-2837.	1.8	38
165	Biosorption of As(III) and As(V) from Aqueous Solution by Lichen (<i>Xanthoria parietina</i>) Biomass. Separation Science and Technology, 2010, 45, 463-471.	1.3	44
166	Trace metal contents in chewing gums and candies marketed in Turkey. Environmental Monitoring and Assessment, 2009, 149, 283-289.	1.3	42
167	Trace element content in marine algae species from the Black Sea, Turkey. Environmental Monitoring and Assessment, 2009, 151, 363-368.	1.3	36
168	Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 2009, 162, 724-729.	6.5	103
169	Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2009, 162, 874-879.	6. 5	179
170	A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 2009, 162, 1041-1045.	6.5	110
171	Assessment of trace element contents of chicken products from turkey. Journal of Hazardous Materials, 2009, 163, 982-987.	6.5	123
172	Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials, 2009, 164, 1004-1011.	6.5	359
173	Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2009, 164, 1372-1378.	6.5	130
174	Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 2009, 164, 1428-1432.	6.5	100
175	Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum. Journal of Hazardous Materials, 2009, 165, 566-572.	6.5	158
176	Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. Journal of Hazardous Materials, 2009, 165, 724-728.	6.5	132
177	Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey. Journal of Hazardous Materials, 2009, 166, 1344-1350.	6.5	23
178	Evaluation of trace element contents of dried apricot samples from Turkey. Journal of Hazardous Materials, 2009, 167, 647-652.	6.5	82
179	Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2009, 169, 263-270.	6.5	136
180	Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2. Journal of Hazardous Materials, 2009, 169, 345-350.	6.5	116

#	Article	IF	CITATIONS
181	Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. Journal of Hazardous Materials, 2009, 169, 466-471.	6.5	275
182	Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic studies. Journal of Hazardous Materials, 2009, 171, 500-507.	6.5	125
183	Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. Journal of Hazardous Materials, 2009, 171, 973-979.	6.5	75
184			

#	Article	IF	CITATIONS
199	Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination. Journal of Hazardous Materials, 2008, 154, 519-525.	6.5	52
200	Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. Journal of Hazardous Materials, 2008, 156, 591-595.	6.5	145
201	Assessment of trace element levels in Rhododendron honeys of Black Sea Region, Turkey. Journal of Hazardous Materials, 2008, 156, 612-618.	6.5	80
202	Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 157, 448-454.	6.5	280
203	5-Chloro-2-hydroxyaniline–copper(II) coprecipitation system for preconcentration and separation of lead(II) and chromium(III) at trace levels. Journal of Hazardous Materials, 2008, 158, 137-141.	6.5	37
204	Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493. Journal of Hazardous Materials, 2008, 159, 335-341.	6.5	41
205	Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 160, 349-355.	6.5	266
206	Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. Journal of Hazardous Materials, 2008, 160, 462-467.	6.5	97
207	Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technology, 2008, 99, 2972-2980.	4.8	245
208	Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2008, 144, 1-9.	6.6	252
209	Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresource Technology, 2008, 99, 1563-1570.	4.8	229
210	Trace element levels in some dried fruit samples from Turkey. International Journal of Food Sciences and Nutrition, 2008, 59, 581-589.	1.3	42
211	Removal of Cr(VI) From Aqueous Solution by Turkish Vermiculite: Equilibrium, Thermodynamic and Kinetic Studies. Separation Science and Technology, 2008, 43, 3563-3581.	1.3	43
212	Determination of trace heavy metals in some textile products produced in Turkey . Bulletin of the Chemical Society of Ethiopia, 2008, 22, .	0.5	39
213	Speciation of selenium(IV) and selenium(VI) in environmental samples by the combination of graphite furnace atomic absorption spectrometric determination and solid phase extraction on Diaion HP-2MG. Talanta, 2007, 71, 1375-1381.	2.9	75
214	Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 2007, 18, 806-810.	2.8	143
215	Determination of trace metals in canned fish marketed in Turkey. Food Chemistry, 2007, 101, 1378-1382.	4.2	149
216	Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Analytica Chimica Acta, 2007, 581, 241-246.	2.6	85

#	Article	IF	Citations
217	Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochemical Engineering Journal, 2007, 37, 151-158.	1.8	208
218	Evaluation of trace element contents in canned foods marketed from Turkey. Food Chemistry, 2007, 102, 1089-1095.	4.2	71
219	Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 2007, 144, 41-46.	6.5	235
220	Cr(VI) and $Cr(III)$ speciation on Bacillus sphaericus loaded diaion SP-850 resin. Journal of Hazardous Materials, 2007, 144, 549-555.	6.5	46
221	Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials, 2007, 147, 219-225.	6.5	322
222	Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples. Journal of Hazardous Materials, 2007, 147, 832-837.	6.5	57
223	Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazardous Materials, 2007, 148, 387-394.	6.5	235
224	Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 2007, 149, 264-268.	6.5	98
225	Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 2007, 149, 283-291.	6.5	367
226	Trace metal content in nine species of fish from the Black and Aegean Seas, Turkey. Food Chemistry, 2007, 104, 835-840.	4.2	209
227	Trace metal levels in lichen samples from roadsides in East Black Sea region, Turkey. Biomedical and Environmental Sciences, 2007, 20, 203-7.	0.2	22
228	Biosorption of heavy metals on Aspergillus fumigatus immobilized Diaion HP-2MG resin for their atomic absorption spectrometric determinations. Talanta, 2006, 70, 1129-1135.	2.9	73
229	Solid phase extraction of iron and lead in environmental matrices on amberlite xad-1180/pv. Quimica Nova, 2006, 29, 203-207.	0.3	27
230	Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493. Analytica Chimica Acta, 2006, 578, 213-219.	2.6	133
231	A solid phase extraction procedure for Indium prior to its graphite furnace atomic absorption spectrometric determination. Journal of Hazardous Materials, 2006, 129, 179-185.	6.5	53
232	Chromium speciation in environmental samples by solid phase extraction on Chromosorb 108. Journal of Hazardous Materials, 2006, 129, 266-273.	6.5	137
233	Celtek clay as sorbent for separation–preconcentration of metal ions from environmental samples. Journal of Hazardous Materials, 2006, 136, 597-603.	6.5	81
234	Sorbent extraction of rubeanic acid–metal chelates on a new adsorbent: Sepabeads SP70. Journal of Hazardous Materials, 2006, 138, 195-200.	6.5	13

#	Article	IF	CITATIONS
235	Diaion SP-850 resin as a new solid phase extractor for preconcentration-separation of trace metal ions in environmental samples. Journal of Hazardous Materials, 2006, 137, 1496-1501.	6.5	108
236	Trace metal pollution from traffic in Denizli-Turkey during dry season. Biomedical and Environmental Sciences, 2006, 19, 254-61.	0.2	9
237	Enrichment/separation of cadmium(II) and lead(II) in environmental samples by solid phase extraction. Journal of Hazardous Materials, 2005, 121, 79-87.	6.5	106
238	Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chemistry, 2005, 90, 175-179.	4.2	110
239	Trace metal levels in mushroom samples from Ordu, Turkey. Food Chemistry, 2005, 91, 463-467.	4.2	52
240	Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108. Analytica Chimica Acta, 2005, 548, 101-108.	2.6	182
241	Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry, 2004, 84, 389-392.	4.2	110
242	Comparison of Sample Preparation Procedures for the Determination of Trace Heavy Metals in House Dust, Tobacco and Tea Samples by Atomic Absorption Spectrometry. Annali Di Chimica, 2004, 94, 867-873.	0.6	26
243	Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry, 2004, 86, 547-552.	4.2	130
244	Column system using diaion HP-2MG for determination of some metal ions by flame atomic absorption spectrometry. Analytica Chimica Acta, 2004, 504, 325-334.	2.6	63
245	XADâ€4/PAN Solid Phase Extraction System for Atomic Absorption Spectrometric Determinations of Some Trace Metals in Environmental Samples. Analytical Letters, 2004, 37, 473-489.	1.0	28
246	Column Solid Phase Extraction of Copper, Iron, and Zinc Ions at Trace Levels in Environmental Samples on Amberlite XADâ€₹ for Their Flame Atomic Absorption Spectrometric Determinations. Analytical Letters, 2004, 37, 1185-1201.	1.0	22
247	Microwave and Wet Digestion Procedures for Atomic Absorption Spectrometric Determination of Trace Metals Contents of Sediment Samples. Analytical Letters, 2004, 37, 1925-1936.	1.0	76
248	Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Talanta, 2004, 63, 411-418.	2.9	147
249	Determination of trace metals in the River Yeşilırmak sediments in Tokat, Turkey using sequential extraction procedure. Microchemical Journal, 2003, 74, 105-110.	2.3	109
250	Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 2003, 74, 289-297.	2.3	328
251	Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 2003, 80, 119-123.	4.2	333
252	Atomic Absorption Spectrometric Determination of Trace Metal Contents of Mushroom Samples from Tokat, Turkey. Analytical Letters, 2003, 36, 1401-1410.	1.0	22

Mustafa Tuzen

#	Article	IF	CITATIONS
253	Investigation of Heavy Metal Levels in Street Dust Samples in Tokat, Turkey. Instrumentation Science and Technology, 2003, 21, 513-521.	0.8	24
254	A COMPARISON OF SAMPLE PREPARATION PROCEDURES FOR THE DETERMINATION OF HEAVY METALS IN LICHEN SAMPLES BY GFAAS. Analytical Letters, 2002, 35, 1667-1676.	1.0	22
255	Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 1999, 65, 453-460.	4.2	122
256	Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. European Food Research and Technology, 1998, 206, 417-419.	0.6	32
257	Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 1998, 63, 247-251.	4.2	81