
Jens Fielitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1687634/publications.pdf Version: 2024-02-01

IENS FIELITZ

#	Article	IF	CITATIONS
1	Stimulation of soluble guanylyl cyclase (sGC) by riociguat attenuates heart failure and pathological cardiac remodelling. British Journal of Pharmacology, 2022, 179, 2430-2442.	5.4	15
2	Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 713-727.	7.3	59
3	Skeletal muscle derived Musclin protects the heart during pathological overload. Nature Communications, 2022, 13, 149.	12.8	27
4	Muscle Mass and Inflammation in Older Adults: Impact of the Metabolic Syndrome. Gerontology, 2022, 68, 989-998.	2.8	14
5	Physical Performance and Non-Esterified Fatty Acids in Men and Women after Transcatheter Aortic Valve Implantation (TAVI). Nutrients, 2022, 14, 203.	4.1	1
6	Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Frontiers in Immunology, 2022, 13, .	4.8	5
7	The Transcription Factor EB (TFEB) Sensitizes the Heart to Chronic Pressure Overload. International Journal of Molecular Sciences, 2022, 23, 5943.	4.1	4
8	Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules, 2021, 11, 1327.	4.0	37
9	Inhibition of the NLRP3/ILâ€1β axis protects against sepsisâ€induced cardiomyopathy. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1653-1668.	7.3	65
10	Serum amyloid A1 mediates myotube atrophy via Tollâ€like receptors. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 103-119.	7.3	40
11	Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Frontiers in Physiology, 2020, 11, 240.	2.8	31
12	Activation of Tripartite Motif Containing 63 Expression by Transcription Factor EB and Transcription Factor Binding to Immunoglobulin Heavy Chain Enhancer 3 Is Regulated by Protein Kinase D and Class Ila Histone Deacetylases. Frontiers in Physiology, 2020, 11, 550506.	2.8	8
13	DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy. Journal of Cell Science, 2019, 132, .	2.0	17
14	Ninjurin1 regulates striated muscle growth and differentiation. PLoS ONE, 2019, 14, e0216987.	2.5	6
15	Muscle wasting and function after muscle activation and early protocolâ€based physiotherapy: an explorative trial. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 734-747.	7.3	57
16	HDAC4 mutations cause diabetes and induce β ell FoxO1 nuclear exclusion. Molecular Genetics & Genomic Medicine, 2019, 7, e602.	1.2	11
17	Sugars make the difference – Glycosylation of cardiodepressant antibodies regulates their activity in dilated cardiomyopathy. International Journal of Cardiology, 2019, 292, 156-159.	1.7	4
18	Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation, 2019, 139, 1407-1421.	1.6	452

Jens Fielitz

#	Article	IF	CITATIONS
19	Deletion of Protein Kinase D1 in Pancreatic β-Cells Impairs Insulin Secretion in High-Fat Diet–Fed Mice. Diabetes, 2018, 67, 71-77.	0.6	18
20	Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study. Frontiers in Physiology, 2018, 9, 1930.	2.8	6
21	Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy. Intensive Care Medicine Experimental, 2017, 5, 3.	1.9	60
22	Secreted Frizzled-Related Protein 2 and Inflammation-Induced Skeletal Muscle Atrophy. Critical Care Medicine, 2017, 45, e169-e183.	0.9	23
23	Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I. Diabetes, 2017, 66, 64-74.	0.6	68
24	Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nature Communications, 2017, 8, 2275.	12.8	21
25	Critical illness polyneuropathy in ICU patients is related to reduced motor nerve excitability caused by reduced sodium permeability. Intensive Care Medicine Experimental, 2016, 4, 10.	1.9	21
26	Cancer cachexia—when proteasomal inhibition is not enough. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 239-245.	7.3	14
27	Muscle RING-finger 2 and 3 maintain striated-muscle structure and function. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 165-180.	7.3	39
28	Induction of Ankrd1 in Dilated Cardiomyopathy Correlates with the Heart Failure Progression. BioMed Research International, 2015, 2015, 1-9.	1.9	30
29	Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated <i>MuRF1</i> Expression. Circulation Research, 2015, 117, 424-436.	4.5	76
30	The E3 ubiquitin ligase TRIM62 and inflammation-induced skeletal muscle atrophy. Critical Care, 2014, 18, 545.	5.8	29
31	Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Medicine, 2014, 40, 528-538.	8.2	108
32	Inflammation-Induced Acute Phase Response in Skeletal Muscle and Critical Illness Myopathy. PLoS ONE, 2014, 9, e92048.	2.5	70
33	Critical Illness Myopathy and GLUT4. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 387-396.	5.6	97
34	Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Critical Care Medicine, 2012, 40, 647-650.	0.9	67
35	Skeletal Muscle 11beta-HSD1 Controls Glucocorticoid-Induced Proteolysis and Expression of E3 Ubiquitin Ligases Atrogin-1 and MuRF-1. PLoS ONE, 2011, 6, e16674.	2.5	39
36	Myocyte Enhancer Factor 2 and Class II Histone Deacetylases Control a Gender-Specific Pathway of Cardioprotection Mediated by the Estrogen Receptor. Circulation Research, 2010, 106, 155-165.	4.5	54

Jens Fielitz

#	Article	IF	CITATIONS
37	Protein Kinase D1 Stimulates MEF2 Activity in Skeletal Muscle and Enhances Muscle Performance. Molecular and Cellular Biology, 2008, 28, 3600-3609.	2.3	100
38	Requirement of protein kinase D1 for pathological cardiac remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3059-3063.	7.1	216
39	Upâ€regulation of PPARγ in myocardial infarction. European Journal of Heart Failure, 2008, 10, 30-38.	7.1	25
40	Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes and Development, 2007, 21, 1790-1802.	5.9	619
41	Inhibition of prolyl 4-hydroxylase prevents left ventricular remodelling in rats with thoracic aortic banding. European Journal of Heart Failure, 2007, 9, 336-342.	7.1	14
42	Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4377-4382.	7.1	90
43	Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. Journal of Clinical Investigation, 2007, 117, 2486-2495.	8.2	211
44	Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. European Journal of Heart Failure, 2006, 8, 347-354.	7.1	58
45	Cardiac PPARα expression in patients with dilated cardiomyopathy. European Journal of Heart Failure, 2006, 8, 290-294.	7.1	28
46	Mechanisms of blood pressure variability-induced cardiac hypertrophy and dysfunction in mice with impaired baroreflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R767-R776.	1.8	52
47	Upregulation of Myocardial Estrogen Receptors in Human Aortic Stenosis. Circulation, 2004, 110, 3270-3275.	1.6	116
48	A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2870-2875.	7.1	90
49	Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. Journal of Molecular Medicine, 2004, 82, 809-820.	3.9	67
50	Neutral Endopeptidase Is Activated in Cardiomyocytes in Human Aortic Valve Stenosis and Heart Failure. Circulation, 2002, 105, 286-289.	1.6	60
51	Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. Journal of the American College of Cardiology, 2001, 37, 1443-1449.	2.8	149