## Beatriz G De La Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1687546/publications.pdf Version: 2024-02-01



REATRIZ C. DE LA TORRE

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2022, 27, 1075.                                                                                 | 1.7  | 60        |
| 2  | Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics, 2022, 14,<br>396.                                                                                                           | 2.0  | 48        |
| 3  | Understanding OxymaPure as a Peptide Coupling Additive: A Guide to New Oxyma Derivatives. ACS<br>Omega, 2022, 7, 6007-6023.                                                                                          | 1.6  | 6         |
| 4  | 2021 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals, 2022, 15, 222.                                                                                                                              | 1.7  | 48        |
| 5  | Amino-Li-Resin—A Fiber Polyacrylamide Resin for Solid-Phase Peptide Synthesis. Polymers, 2022, 14, 928.                                                                                                              | 2.0  | 4         |
| 6  | Chemoselective Disulfide Formation by Thiol-Disulfide Interchange in SIT-Protected Cysteinyl Peptides.<br>Journal of Organic Chemistry, 2022, 87, 708-712.                                                           | 1.7  | 7         |
| 7  | <i>In situ</i> Fmoc removal – a sustainable solid-phase peptide synthesis approach. Green Chemistry, 2022, 24, 4887-4896.                                                                                            | 4.6  | 6         |
| 8  | Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic<br>Protein (RNase 3). ACS Infectious Diseases, 2022, 8, 1207-1217.                                                   | 1.8  | 1         |
| 9  | Synthesis and Antiproliferative Activity of a New Series of Mono- and<br>Bis(dimethylpyrazolyl)- <i>s</i> -triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades.<br>ACS Omega, 2022, 7, 24858-24870. | 1.6  | 14        |
| 10 | Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Preparation of Peptides. Chemical Reviews, 2022, 122, 13516-13546.                                                                                       | 23.0 | 35        |
| 11 | 1,3,5-Triazine as core for the preparation of dendrons. Arkivoc, 2021, 2020, 64-73.                                                                                                                                  | 0.3  | 2         |
| 12 | The Pharmaceutical Industry in 2020. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2021, 26, 627.                                                                                  | 1.7  | 87        |
| 13 | A native mass spectrometry platform identifies HOP inhibitors that modulate the HSP90–HOP protein–protein interaction. Chemical Communications, 2021, 57, 10919-10922.                                               | 2.2  | 3         |
| 14 | 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals, 2021, 14, 145.                                                                                                                              | 1.7  | 51        |
| 15 | Propylphosphonic Anhydride (T3P®) as Coupling Reagent for Solidâ€Phase Peptide Synthesis.<br>ChemistrySelect, 2021, 6, 2649-2657.                                                                                    | 0.7  | 9         |
| 16 | The Antiproliferative and Apoptotic Effect of a Novel Synthesized S-Triazine Dipeptide Series, and<br>Toxicity Screening in Zebrafish Embryos. Molecules, 2021, 26, 1170.                                            | 1.7  | 7         |
| 17 | s-Triazine: A Privileged Structure for Drug Discovery and Bioconjugation. Molecules, 2021, 26, 864.                                                                                                                  | 1.7  | 31        |
| 18 | Refractive Index: The Ultimate Tool for Real-Time Monitoring of Solid-Phase Peptide Synthesis.<br>Greening the Process. Organic Process Research and Development, 2021, 25, 1047-1053.                               | 1.3  | 9         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Scope and Limitations of Barbituric and Thiobarbituric Amino Acid Derivatives as Protecting Groups<br>for Solidâ€Phase Peptide Synthesis: Towards a Green Protecting Group. ChemistrySelect, 2021, 6,<br>6626-6630.                | 0.7 | 3         |
| 20 | Super-Cationic Peptide Dendrimers—Synthesis and Evaluation as Antimicrobial Agents. Antibiotics, 2021, 10, 695.                                                                                                                    | 1.5 | 5         |
| 21 | Latest Advances on Synthesis, Purification, and Characterization of Peptides and Their Applications.<br>Applied Sciences (Switzerland), 2021, 11, 5593.                                                                            | 1.3 | 3         |
| 22 | Rhodiasolv PolarClean – a greener alternative in solid-phase peptide synthesis. Green Chemistry<br>Letters and Reviews, 2021, 14, 545-550.                                                                                         | 2.1 | 11        |
| 23 | Synthesis of New Peptideâ€Based Ligands with 1,2â€HOPO Pendant Chelators and Thermodynamic<br>Evaluation of Their Iron(III) Complexes**. ChemistrySelect, 2021, 6, 7674-7681.                                                      | 0.7 | 1         |
| 24 | Amide Formation: Choosing the Safer Carbodiimide in Combination with OxymaPure to Avoid HCN<br>Release. Organic Letters, 2021, 23, 6900-6904.                                                                                      | 2.4 | 14        |
| 25 | Novel Biomimetic Human TLR2-Derived Peptides for Potential Targeting of Lipoteichoic Acid: An In<br>Silico Assessment. Biomedicines, 2021, 9, 1063.                                                                                | 1.4 | 1         |
| 26 | Minimizing side reactions during amide formation using DIC and oxymapure in solid-phase peptide synthesis. Tetrahedron Letters, 2021, 85, 153462.                                                                                  | 0.7 | 8         |
| 27 | Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human<br>breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorganic Chemistry, 2020,<br>94, 103397. | 2.0 | 17        |
| 28 | Synthesis and Antimicrobial Activity of a New Series of Thiazolidine-2,4-diones Carboxamide and Amino<br>Acid Derivatives. Molecules, 2020, 25, 105.                                                                               | 1.7 | 16        |
| 29 | Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as<br>Trojan horses against pathogens. European Journal of Medicinal Chemistry, 2020, 208, 112791.                                 | 2.6 | 50        |
| 30 | Novel formulation of antimicrobial peptides enhances antimicrobial activity against<br>methicillin-resistant Staphylococcus aureus (MRSA). Amino Acids, 2020, 52, 1439-1457.                                                       | 1.2 | 20        |
| 31 | Exploiting azido-dichloro-triazine as a linker for regioselective incorporation of peptides through their N, O, S functional groups. Bioorganic Chemistry, 2020, 104, 104334.                                                      | 2.0 | 3         |
| 32 | Disulfide-Based Protecting Groups for the Cysteine Side Chain. Organic Letters, 2020, 22, 9644-9647.                                                                                                                               | 2.4 | 10        |
| 33 | Solid-phase synthesis of peptides containing 1-Hydroxypyridine-2-one (1,2-HOPO). Tetrahedron Letters, 2020, 61, 152299.                                                                                                            | 0.7 | 2         |
| 34 | <i>N</i> â€Butylpyrrolidinone for Solidâ€Phase Peptide Synthesis is Environmentally Friendlier and<br>Synthetically Better than DMF. ChemSusChem, 2020, 13, 5288-5294.                                                             | 3.6 | 29        |
| 35 | Novel 4,6-Disubstituted s-Triazin-2-yl Amino Acid Derivatives as Promising Antifungal Agents. Journal of Fungi (Basel, Switzerland), 2020, 6, 237.                                                                                 | 1.5 | 8         |
| 36 | Protocol for efficient solid-phase synthesis of peptides containing 1-hydroxypyridine-2-one (1,2-HOPO).<br>MethodsX, 2020, 7, 101082.                                                                                              | 0.7 | 2         |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insights into the chemistry of the amphibactin–metal (M3+) interaction and its role in antibiotic resistance. Scientific Reports, 2020, 10, 21049.                                                                                      | 1.6 | 3         |
| 38 | Peptide Therapeutics 2.0. Molecules, 2020, 25, 2293.                                                                                                                                                                                    | 1.7 | 98        |
| 39 | Enamine Barbiturates and Thiobarbiturates as a New Class of Bacterial Urease Inhibitors. Applied<br>Sciences (Switzerland), 2020, 10, 3523.                                                                                             | 1.3 | 5         |
| 40 | Protocol for synthesis of di- and tri-substituted s-triazine derivatives. MethodsX, 2020, 7, 100825.                                                                                                                                    | 0.7 | 2         |
| 41 | 2019 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals, 2020, 13, 40.                                                                                                                                                  | 1.7 | 54        |
| 42 | Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evaluation of their<br>α-glucosidase inhibitory and anti-glycation activity. Journal of Enzyme Inhibition and Medicinal<br>Chemistry, 2020, 35, 692-701. | 2.5 | 17        |
| 43 | Breaking a Couple: Disulfide Reducing Agents. ChemBioChem, 2020, 21, 1947-1954.                                                                                                                                                         | 1.3 | 39        |
| 44 | Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog<br>Pleurodema somuncurense. Journal of Natural Products, 2020, 83, 972-984.                                                                     | 1.5 | 8         |
| 45 | Crystal Structure and Theoretical Investigation of Thiobarbituric Acid Derivatives as Nonlinear<br>Optical (NLO) Materials. Crystals, 2020, 10, 442.                                                                                    | 1.0 | 2         |
| 46 | Revisiting NO2 as Protecting Group of Arginine in Solid-Phase Peptide Synthesis. International Journal of Molecular Sciences, 2020, 21, 4464.                                                                                           | 1.8 | 7         |
| 47 | Barbiturate- and Thiobarbituarte-Based <i>s</i> -Triazine Hydrazone Derivatives with Promising Antiproliferative Activities. ACS Omega, 2020, 5, 15805-15811.                                                                           | 1.6 | 21        |
| 48 | The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2020, 25, 745.                                                                                                     | 1.7 | 121       |
| 49 | Greening Fmoc/ <i>t</i> Bu solid-phase peptide synthesis. Green Chemistry, 2020, 22, 996-1018.                                                                                                                                          | 4.6 | 85        |
| 50 | Phenol as a Modulator in the Chemical Reactivity of 2,4,6-Trichloro-1,3,5-triazine: Rules of the Game II.<br>Australian Journal of Chemistry, 2020, 73, 352.                                                                            | 0.5 | 5         |
| 51 | Cleaving protected peptides from 2-chlorotrityl chloride resin. Moving away from dichloromethane.<br>Green Chemistry, 2020, 22, 2840-2845.                                                                                              | 4.6 | 11        |
| 52 | Solid-Phase Synthesis of Head to Side-Chain Tyr-Cyclodepsipeptides Through a Cyclative Cleavage From<br>Fmoc-MeDbz/MeNbz-resins. Frontiers in Chemistry, 2020, 8, 298.                                                                  | 1.8 | 7         |
| 53 | Naturally Occurring Oxazole-Containing Peptides. Marine Drugs, 2020, 18, 203.                                                                                                                                                           | 2.2 | 34        |
| 54 | Successful development of a method for the incorporation of Fmoc-Arg(Pbf)-OH in solid-phase peptide synthesis using <i>N</i> -butylpyrrolidinone (NBP) as solvent. Green Chemistry, 2020, 22, 3162-3169.                                | 4.6 | 22        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | OxymaPure Coupling Reagents: Beyond Solid-Phase Peptide Synthesis. Synthesis, 2020, 52, 3189-3210.                                                                                                                | 1.2 | 6         |
| 56 | s-Triazine: A Multidisciplinary and International Journey. Chemistry Proceedings, 2020, 3, .                                                                                                                      | 0.1 | 0         |
| 57 | γ-Valerolactone (GVL): An eco-friendly anchoring solvent for solid-phase peptide synthesis.<br>Tetrahedron Letters, 2019, 60, 151058.                                                                             | 0.7 | 19        |
| 58 | Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination. ACS Combinatorial Science, 2019, 21, 717-721.                                       | 3.8 | 7         |
| 59 | Scope and Limitations of γ-Valerolactone (GVL) as a Green Solvent to be Used with Base for Fmoc<br>Removal in Solid Phase Peptide Synthesis. Molecules, 2019, 24, 4004.                                           | 1.7 | 20        |
| 60 | Investigating Triorthogonal Chemoselectivity. Effect of Azide Substitution on the Triazine Core.<br>Organic Letters, 2019, 21, 7888-7892.                                                                         | 2.4 | 9         |
| 61 | Green Transformation of Solid-Phase Peptide Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3671-3683.                                                                                             | 3.2 | 67        |
| 62 | Bypassing Osmotic Shock Dilemma in a Polystyrene Resin Using the Green Solvent Cyclopentyl methyl<br>Ether (CPME): A Morphological Perspective. Polymers, 2019, 11, 874.                                          | 2.0 | 8         |
| 63 | 2018 FDA Tides Harvest. Pharmaceuticals, 2019, 12, 52.                                                                                                                                                            | 1.7 | 39        |
| 64 | Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human<br>cancer cell lines, and in vivo toxicity in zebrafish embryos. Bioorganic Chemistry, 2019, 87, 457-464. | 2.0 | 37        |
| 65 | Troubleshooting When Using γ-Valerolactone (GVL) in Green Solid-Phase Peptide Synthesis. Organic<br>Process Research and Development, 2019, 23, 1096-1100.                                                        | 1.3 | 29        |
| 66 | The Pharmaceutical Industry in 2018. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2019, 24, 809.                                                                               | 1.7 | 95        |
| 67 | 2-(Dibenzylamino)butane-1,4-dithiol (DABDT), a Friendly Disulfide-Reducing Reagent Compatible with a<br>Broad Range of Solvents. Organic Letters, 2019, 21, 10111-10114.                                          | 2.4 | 7         |
| 68 | OctaGel Resin - A New PEG-PS-based Solid Support for Solid-Phase Peptide Synthesis. Letters in Organic<br>Chemistry, 2019, 16, 935-940.                                                                           | 0.2 | 4         |
| 69 | Efficient Route for Synthesis of Enamines from 1,3-Alkyl-2-Thioxodihydropyrimidine-4,6(1H,5H)-dione<br>Enols. Letters in Organic Chemistry, 2019, 16, 538-540.                                                    | 0.2 | 0         |
| 70 | Solid-Phase Synthesis of Pyrrole Derivatives through a Multicomponent Reaction Involving<br>Lys-Containing Peptides. ACS Combinatorial Science, 2018, 20, 187-191.                                                | 3.8 | 14        |
| 71 | 1,3,5â€Triazino Peptide Derivatives: Synthesis, Characterization, and Preliminary Antileishmanial Activity.<br>ChemMedChem, 2018, 13, 725-735.                                                                    | 1.6 | 23        |
| 72 | Application of Decafluorobiphenyl (DFBP) Moiety as a Linker in Bioconjugation. Bioconjugate<br>Chemistry, 2018, 29, 225-233.                                                                                      | 1.8 | 7         |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Microwave-Assisted Green Solid-Phase Peptide Synthesis Using Î <sup>3</sup> -Valerolactone (GVL) as Solvent. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 8034-8039.                                                          | 3.2 | 65        |
| 74 | Solid-phase synthesis of homodetic cyclic peptides from Fmoc-MeDbz-resin. Tetrahedron Letters, 2018, 59, 1779-1782.                                                                                                                     | 0.7 | 14        |
| 75 | <i>N</i> â€methylation in amino acids and peptides: Scope and limitations. Biopolymers, 2018, 109, e23110.                                                                                                                              | 1.2 | 41        |
| 76 | Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorganic and Medicinal Chemistry, 2018, 26, 2788-2796.                                                                                                 | 1.4 | 40        |
| 77 | Crystal structure, spectroscopic studies and theoretical studies of thiobarbituric acid derivatives:<br>understanding the hydrogen-bonding patterns. Acta Crystallographica Section C, Structural<br>Chemistry, 2018, 74, 1703-1714.    | 0.2 | 4         |
| 78 | Greening the Solid-Phase Peptide Synthesis Process. 2-MeTHF for the Incorporation of the First Amino<br>Acid and Precipitation of Peptides after Global Deprotection. Organic Process Research and<br>Development, 2018, 22, 1809-1816. | 1.3 | 33        |
| 79 | Perfluorophenyl Derivatives as Unsymmetrical Linkers for Solid Phase Conjugation. Frontiers in Chemistry, 2018, 6, 589.                                                                                                                 | 1.8 | 5         |
| 80 | Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem, 2018, 14, 24-51.                                                                                                                                              | 1.6 | 7         |
| 81 | Exploring the Orthogonal Chemoselectivity of 2,4,6-Trichloro-1,3,5-Triazine (TCT) as a Trifunctional<br>Linker With Different Nucleophiles: Rules of the Game. Frontiers in Chemistry, 2018, 6, 516.                                    | 1.8 | 30        |
| 82 | 2017 FDA Peptide Harvest. Pharmaceuticals, 2018, 11, 42.                                                                                                                                                                                | 1.7 | 44        |
| 83 | Investigating green ethers for the precipitation of peptides after global deprotection in solid-phase peptide synthesis. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 99-103.                                          | 3.2 | 21        |
| 84 | Immune Response and Partial Protection against Heterologous Foot-and-Mouth Disease Virus Induced by Dendrimer Peptides in Cattle. Journal of Immunology Research, 2018, 2018, 1-12.                                                     | 0.9 | 11        |
| 85 | In Vitro Antibacterial Activity of Teixobactin Derivatives on Clinically Relevant Bacterial Isolates.<br>Frontiers in Microbiology, 2018, 9, 1535.                                                                                      | 1.5 | 25        |
| 86 | Formation of <i>N</i> <sup>α</sup> -terminal 2-dialkyl amino oxazoles from guanidinated derivatives<br>under mild conditions. Organic and Biomolecular Chemistry, 2018, 16, 5661-5666.                                                  | 1.5 | 3         |
| 87 | Exploiting the Thiobarbituric Acid Scaffold for Antibacterial Activity. ChemMedChem, 2018, 13, 1923-1930.                                                                                                                               | 1.6 | 12        |
| 88 | The Pharmaceutical Industry in 2017. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2018, 23, 533.                                                                                                     | 1.7 | 94        |
| 89 | Diethylphosphoryl-OxymaB (DEPO-B) as a Solid Coupling Reagent for Amide Bond Formation. Letters in<br>Organic Chemistry, 2018, 16, 30-33.                                                                                               | 0.2 | 2         |
| 90 | Green Solid-Phase Peptide Synthesis (GSPPS) 3. Green Solvents for Fmoc Removal in Peptide Chemistry.<br>Organic Process Research and Development, 2017, 21, 365-369.                                                                    | 1.3 | 52        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Microwave-Assisted Synthesis of Antimicrobial Peptides. Methods in Molecular Biology, 2017, 1548, 51-59.                                                                                                                 | 0.4 | 6         |
| 92  | Tetrahydropyranyl: A Nonâ€aromatic, Mildâ€Acidâ€Labile Group for Hydroxyl Protection in Solidâ€Phase<br>Peptide Synthesis. ChemistryOpen, 2017, 6, 206-210.                                                              | 0.9 | 4         |
| 93  | Understanding Tetrahydropyranyl as a Protecting Group in Peptide Chemistry. ChemistryOpen, 2017, 6, 168-177.                                                                                                             | 0.9 | 15        |
| 94  | Facile solid-phase synthesis of head-side chain cyclothiodepsipeptides through a cyclative cleavage from MeDbz-resin. Tetrahedron Letters, 2017, 58, 2788-2791.                                                          | 0.7 | 16        |
| 95  | Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. Journal of<br>Molecular Structure, 2017, 1145, 244-253.                                                                          | 1.8 | 45        |
| 96  | Synthesis, in vitro evaluation, and <sup>68</sup> Gaâ€radiolabeling of <scp>CDP</scp> 1 toward<br><scp>PET</scp> / <scp>CT</scp> imaging of bacterial infection. Chemical Biology and Drug Design, 2017,<br>90, 572-579. | 1.5 | 10        |
| 97  | Reâ€evaluating the stability of COMU in different solvents. Journal of Peptide Science, 2017, 23, 763-768.                                                                                                               | 0.8 | 18        |
| 98  | Converting Teixobactin into a Cationic Antimicrobial Peptide (AMP). Journal of Medicinal Chemistry, 2017, 60, 7476-7482.                                                                                                 | 2.9 | 42        |
| 99  | Fmoc-Amox, A Suitable Reagent for the Introduction of Fmoc. Organic Process Research and Development, 2017, 21, 1533-1541.                                                                                               | 1.3 | 3         |
| 100 | Green solid-phase peptide synthesis 4. γ-Valerolactone and N -formylmorpholine as green solvents for solid phase peptide synthesis. Tetrahedron Letters, 2017, 58, 2986-2988.                                            | 0.7 | 61        |
| 101 | Investigation of the N-Terminus Amino Function of Arg10-Teixobactin. Molecules, 2017, 22, 1632.                                                                                                                          | 1.7 | 20        |
| 102 | The Pharmaceutical Industry in 2016. An Analysis of FDA Drug Approvals from a Perspective of the Molecule Type. Molecules, 2017, 22, 368.                                                                                | 1.7 | 28        |
| 103 | Structure-Activity Relationship of Arg10-Teixobactin: A Recently Discovered Antimicrobial Peptide.<br>Proceedings (mdpi), 2017, 1, .                                                                                     | 0.2 | 0         |
| 104 | Synthesis, Characterization, and Tautomerism of 1,3-Dimethyl Pyrimidine-2,4,6-Trione s-Triazinyl<br>Hydrazine/Hydrazone Derivatives. Journal of Chemistry, 2017, 2017, 1-10.                                             | 0.9 | 7         |
| 105 | Synthesis, Crystal Structure and DFT Studies of<br>1,3-Dimethyl-5-propionylpyrimidine-2,4,6(1H,3H,5H)-trione. Crystals, 2017, 7, 31.                                                                                     | 1.0 | 6         |
| 106 | Dendrimeric peptides can confer protection against foot-and-mouth disease virus in cattle. PLoS ONE, 2017, 12, e0185184.                                                                                                 | 1.1 | 19        |
| 107 | Lysine Scanning of Arg <sub>10</sub> –Teixobactin: Deciphering the Role of Hydrophobic and<br>Hydrophilic Residues. ACS Omega, 2016, 1, 1262-1265.                                                                       | 1.6 | 51        |
| 108 | A Facile Synthesis of NODASA-Functionalized Peptide. Synlett, 2016, 27, 1685-1688.                                                                                                                                       | 1.0 | 7         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Green Solid-Phase Peptide Synthesis 2. 2-Methyltetrahydrofuran and Ethyl Acetate for Solid-Phase<br>Peptide Synthesis under Green Conditions. ACS Sustainable Chemistry and Engineering, 2016, 4,<br>6809-6814.   | 3.2 | 85        |
| 110 | Re-evaluation of the N-terminal substitution and the D-residues of teixobactin. RSC Advances, 2016, 6, 73827-73829.                                                                                               | 1.7 | 34        |
| 111 | Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.<br>Journal of Peptide Science, 2016, 22, 438-451.                                                                  | 0.8 | 64        |
| 112 | Peptides conjugated to silver nanoparticles in biomedicine – a "value-added―phenomenon.<br>Biomaterials Science, 2016, 4, 1713-1725.                                                                              | 2.6 | 34        |
| 113 | Oxyma-T, expanding the arsenal of coupling reagents. Tetrahedron Letters, 2016, 57, 3523-3525.                                                                                                                    | 0.7 | 5         |
| 114 | An improved and efficient strategy for the total synthesis of a colistin-like peptide. Tetrahedron<br>Letters, 2016, 57, 1885-1888.                                                                               | 0.7 | 15        |
| 115 | Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide.<br>Antiviral Research, 2016, 129, 74-80.                                                                  | 1.9 | 49        |
| 116 | Highly chemoselective ligation of thiol- and amino-peptides on a bromomaleimide core. Chemical Communications, 2016, 52, 2334-2337.                                                                               | 2.2 | 9         |
| 117 | 2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis. Amino<br>Acids, 2016, 48, 419-426.                                                                                  | 1.2 | 69        |
| 118 | Synthesis and Biological Evaluation of a Teixobactin Analogue. Organic Letters, 2015, 17, 6182-6185.                                                                                                              | 2.4 | 77        |
| 119 | 6-(Bromomaleimido)hexanoic Acid as a Connector for the Construction of Multiple Branched Peptide<br>Platforms. Organic Letters, 2015, 17, 464-467.                                                                | 2.4 | 6         |
| 120 | Optimized Microwave Assisted Synthesis of LL37, a Cathelicidin Human Antimicrobial Peptide.<br>International Journal of Peptide Research and Therapeutics, 2015, 21, 13-20.                                       | 0.9 | 7         |
| 121 | Chemical Platforms for Peptide Vaccine Constructs. Advances in Protein Chemistry and Structural Biology, 2015, 99, 99-130.                                                                                        | 1.0 | 4         |
| 122 | An efficient solid-phase strategy for total synthesis of naturally occurring amphiphilic marine<br>siderophores: amphibactin-T and moanachelin ala-B. Organic and Biomolecular Chemistry, 2015, 13,<br>4760-4768. | 1.5 | 10        |
| 123 | EDC·HCl and Potassium Salts of Oxyma and Oxymaâ€B as Superior Coupling Cocktails for Peptide<br>Synthesis. European Journal of Organic Chemistry, 2015, 2015, 3116-3120.                                          | 1.2 | 22        |
| 124 | Structural Dissection of Crotalicidin, a Rattlesnake Venom Cathelicidin, Retrieves a Fragment with<br>Antimicrobial and Antitumor Activity. Journal of Medicinal Chemistry, 2015, 58, 8553-8563.                  | 2.9 | 63        |
| 125 | Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives. Organic and Biomolecular Chemistry, 2015, 13, 2393-2398.                                                                      | 1.5 | 69        |
| 126 | Bio-analytical method based on MALDI-MS analysis for the quantification of CIGB-300 anti-tumor peptide in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2015, 105, 107-114.                    | 1.4 | 5         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Monitoring antibacterial permeabilization in real time using time-resolved flow cytometry. Biochimica<br>Et Biophysica Acta - Biomembranes, 2015, 1848, 554-560.                                                        | 1.4 | 53        |
| 128 | Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication. PLoS ONE, 2015, 10, e0141415.                                                                                                                | 1.1 | 4         |
| 129 | Chapter 15. Cyclic Peptides as Privileged Structures. RSC Drug Discovery Series, 2015, , 398-438.                                                                                                                       | 0.2 | 1         |
| 130 | Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 2014, 46, 2561-2571.                                                                      | 1.2 | 60        |
| 131 | Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. FEBS Journal, 2014, 281, 191-215.                                                          | 2.2 | 40        |
| 132 | A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids, 2014, 46, 1047-1058.                        | 1.2 | 22        |
| 133 | An optimized Fmoc synthesis of human defensin 5. Amino Acids, 2014, 46, 395-400.                                                                                                                                        | 1.2 | 14        |
| 134 | Solid-phase peptide synthesis (SPPS), C-terminal vs. side-chain anchoring: a reality or a myth. Amino<br>Acids, 2014, 46, 1827-1838.                                                                                    | 1.2 | 13        |
| 135 | Immobilized Coupling Reagents: Synthesis of Amides/Peptides. ACS Combinatorial Science, 2014, 16, 579-601.                                                                                                              | 3.8 | 22        |
| 136 | A genetic fiber modification to achieve matrix-metalloprotease-activated infectivity of oncolytic adenovirus. Journal of Controlled Release, 2014, 192, 148-156.                                                        | 4.8 | 9         |
| 137 | Oxyma-B, an excellent racemization suppressor for peptide synthesis. Organic and Biomolecular<br>Chemistry, 2014, 12, 8379-8385.                                                                                        | 1.5 | 28        |
| 138 | Microreactors for peptide synthesis: looking through the eyes of twenty first century !!!. Amino Acids, 2014, 46, 2091-2104.                                                                                            | 1.2 | 17        |
| 139 | TOMBU and COMBU as Novel Uronium-Type Peptide Coupling Reagents Derived from Oxyma-B.<br>Molecules, 2014, 19, 18953-18965.                                                                                              | 1.7 | 11        |
| 140 | Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers, 2013, 100, 325-336.                                                                           | 1.2 | 14        |
| 141 | Quantifying molecular partition of cellâ€penetrating peptide–cargo supramolecular complexes into<br>lipid membranes: optimizing peptideâ€based drug delivery systems. Journal of Peptide Science, 2013, 19,<br>182-189. | 0.8 | 11        |
| 142 | Influence of Conjugation Chemistry and B Epitope Orientation on the Immune Response of Branched<br>Peptide Antigens. Bioconjugate Chemistry, 2013, 24, 578-585.                                                         | 1.8 | 26        |
| 143 | Kinetic uptake profiles of cell penetrating peptides in lymphocytes and monocytes. Biochimica Et<br>Biophysica Acta - General Subjects, 2013, 1830, 4554-4563.                                                          | 1.1 | 21        |
| 144 | B Epitope Multiplicity and B/T Epitope Orientation Influence Immunogenicity of Foot-and-Mouth<br>Disease Peptide Vaccines. Clinical and Developmental Immunology, 2013, 2013, 1-9.                                      | 3.3 | 23        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Mutations That Hamper Dimerization of Foot-and-Mouth Disease Virus 3A Protein Are Detrimental for<br>Infectivity. Journal of Virology, 2012, 86, 11013-11023.                                                               | 1.5  | 16        |
| 146 | Reverse thioether ligation route to multimeric peptide antigens. Organic and Biomolecular Chemistry, 2012, 10, 3116.                                                                                                        | 1.5  | 20        |
| 147 | A T-cell epitope on NS3 non-structural protein enhances the B and T cell responses elicited by dendrimeric constructions against CSFV in domestic pigs. Veterinary Immunology and Immunopathology, 2012, 150, 36-46.        | 0.5  | 23        |
| 148 | Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2707-2717.                                  | 1.4  | 34        |
| 149 | Snake Venom-Derived Peptides as Tools for Intracellular Delivery. Biophysical Journal, 2012, 102, 488a.                                                                                                                     | 0.2  | 0         |
| 150 | Cyclic amino acid linkers stabilizing key loops of brain derived neurotrophic factor. Bioorganic and<br>Medicinal Chemistry Letters, 2012, 22, 444-448.                                                                     | 1.0  | 11        |
| 151 | Insights into the Uptake Mechanism of NrTP, A Cellâ€Penetrating Peptide Preferentially Targeting the Nucleolus of Tumour Cells. Chemical Biology and Drug Design, 2012, 79, 907-915.                                        | 1.5  | 27        |
| 152 | Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug<br>smuggling: A proof of mechanism for trypanosomatid chemotherapy. Journal of Controlled Release,<br>2012, 161, 835-842. | 4.8  | 24        |
| 153 | Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth<br>disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virology Journal,<br>2012, 9, 66.   | 1.4  | 20        |
| 154 | Efficient Cellular Delivery of β-Galactosidase Mediated by NrTPs, a New Family of Cell-Penetrating<br>Peptides. Bioconjugate Chemistry, 2011, 22, 2339-2344.                                                                | 1.8  | 23        |
| 155 | Refining the Eosinophil Cationic Protein Antibacterial Pharmacophore by Rational Structure<br>Minimization. Journal of Medicinal Chemistry, 2011, 54, 5237-5244.                                                            | 2.9  | 31        |
| 156 | Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 1391-1398.                   | 1.3  | 26        |
| 157 | Peptide vaccine candidates against classical swine fever virus: T cell and neutralizing antibody<br>responses of dendrimers displaying E2 and NS2–3 epitopes. Journal of Peptide Science, 2011, 17, 24-31.                  | 0.8  | 30        |
| 158 | Synthesis of multiple antigenic peptides (MAPs)—strategies and limitations. Journal of Peptide Science, 2011, 17, 247-251.                                                                                                  | 0.8  | 34        |
| 159 | Structural Framework for the Modulation of the Activity of the Hybrid Antibiotic Peptide Cecropin<br>Aâ€Melittin [CA(1–7)M(2–9)] by N <sup>ε</sup> ‣ysine Trimethylation. ChemBioChem, 2011, 12, 2177-2.                    | 183. | 5         |
| 160 | The C-Terminus of H-Ras as a Target for the Covalent Binding of Reactive Compounds Modulating<br>Ras-Dependent Pathways. PLoS ONE, 2011, 6, e15866.                                                                         | 1.1  | 30        |
| 161 | NMR Structural Determinants of Eosinophil Cationic Protein Binding toÂMembrane and Heparin<br>Mimetics. Biophysical Journal, 2010, 98, 2702-2711.                                                                           | 0.2  | 27        |
| 162 | Influence of Lysine Nε-Trimethylation and Lipid Composition on the Membrane Activity of the Cecropin<br>A-Melittin Hybrid Peptide CA(1â^'7)M(2â^'9)â€. Journal of Physical Chemistry B, 2010, 114, 16198-16208.             | 1.2  | 19        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Strategies and Limitations in Dendrimeric Immunogen Synthesis. The Influenza Virus M2e Epitope as a<br>Case Study. Bioconjugate Chemistry, 2010, 21, 102-110.                                                            | 1.8 | 23        |
| 164 | Sequence Inversion and Phenylalanine Surrogates at the β-Turn Enhance the Antibiotic Activity of Gramicidin S. Journal of Medicinal Chemistry, 2010, 53, 4119-4129.                                                      | 2.9 | 38        |
| 165 | Lysine <i>N</i> <sup>ε</sup> -Trimethylation, a Tool for Improving the Selectivity of Antimicrobial<br>Peptides. Journal of Medicinal Chemistry, 2010, 53, 5587-5596.                                                    | 2.9 | 30        |
| 166 | Therapeutic Index of Gramicidin S is Strongly Modulated by <scp>d</scp> -Phenylalanine Analogues at the β-Turn. Journal of Medicinal Chemistry, 2009, 52, 664-674.                                                       | 2.9 | 46        |
| 167 | Structural Constraints Imposed by the Conserved Fusion Peptide on the HIV-1 gp41 Epitope Recognized by the Broadly Neutralizing Antibody 2F5. Journal of Physical Chemistry B, 2009, 113, 13626-13637.                   | 1.2 | 21        |
| 168 | Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochemical Journal, 2009, 421, 425-434.                                              | 1.7 | 77        |
| 169 | Neo-glycopeptides: the importance of sugar core conformation in oxime-linked glycoprobes for interaction studies. Glycoconjugate Journal, 2008, 25, 879-887.                                                             | 1.4 | 27        |
| 170 | On choosing the right ether for peptide precipitation after acid cleavage. Journal of Peptide Science, 2008, 14, 360-363.                                                                                                | 0.8 | 9         |
| 171 | A Novel Cell-Penetrating Peptide Sequence Derived by Structural Minimization of a Snake Toxin<br>Exhibits Preferential Nucleolar Localization. Journal of Medicinal Chemistry, 2008, 51, 7041-7044.                      | 2.9 | 42        |
| 172 | Enhanced Mucosal Immunoglobulin A Response and Solid Protection against Foot-and-Mouth Disease<br>Virus Challenge Induced by a Novel Dendrimeric Peptide. Journal of Virology, 2008, 82, 7223-7230.                      | 1.5 | 92        |
| 173 | A Flexible Method for the Fabrication of Gold Nanostructures Using Oligonucleotide Derivatives.<br>Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1605-1609.                                                      | 0.4 | 1         |
| 174 | Monitoring Gene Therapy by External Imaging of mRNA: Pilot Study on Murine Erythropoietin.<br>Therapeutic Drug Monitoring, 2007, 29, 612-618.                                                                            | 1.0 | 19        |
| 175 | Optimized synthesis of aminooxy-peptides as glycoprobe precursors for surface-based sugar–protein<br>interaction studies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5155-5158.                               | 1.0 | 19        |
| 176 | Anti-EPO and anti-NESP antibodies raised against synthetic peptides that reproduce the minimal amino<br>acid sequence differences between EPO and NESP. Analytical and Bioanalytical Chemistry, 2007, 388,<br>1531-1538. | 1.9 | 9         |
| 177 | Polyethyleneglycol-Based Resins as Solid Supports for the Synthesis of Difficult or Long Peptides.<br>International Journal of Peptide Research and Therapeutics, 2007, 13, 265-270.                                     | 0.9 | 36        |
| 178 | Structural Analysis and Assembly of the HIV-1 Gp41 Amino-Terminal Fusion Peptide and the<br>Pretransmembrane Amphipathic-At-Interface Sequence. Biochemistry, 2006, 45, 14337-14346.                                     | 1.2 | 42        |
| 179 | Membrane-transferring Sequences of the HIV-1 Gp41 Ectodomain Assemble into an Immunogenic<br>Complex. Journal of Molecular Biology, 2006, 360, 45-55.                                                                    | 2.0 | 38        |
| 180 | Synthesis of 16-mercaptohexadecylphosphocholine, a miltefosine analog with leishmanicidal activity.<br>Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5190-5193.                                                  | 1.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | The induction of NOS2 expression by the hybrid cecropin A–melittin antibiotic peptide CA(1–8)M(1–18)<br>in the monocytic line RAW 264.7 is triggered by a temporary and reversible plasma membrane<br>permeation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 110-119. | 1.9  | 6         |
| 182 | Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of<br>Acinetobacter baumannii : Molecular Basis for the Differential Mechanisms of Action. Antimicrobial<br>Agents and Chemotherapy, 2006, 50, 1251-1256.                                           | 1.4  | 84        |
| 183 | Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant<br>clinical isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2006, 58, 95-100.                                                                                    | 1.3  | 50        |
| 184 | Hybridization and Melting Behavior of Peptide Nucleic Acid (PNA) Oligonucleotide Chimeras<br>Conjugated to Gold Nanoparticles. Helvetica Chimica Acta, 2004, 87, 2727-2734.                                                                                                                     | 1.0  | 16        |
| 185 | Synthesis of Branched Oligonucleotides as Templates for the Assembly of Nanomaterials. Helvetica<br>Chimica Acta, 2003, 86, 2814-2826.                                                                                                                                                          | 1.0  | 22        |
| 186 | Synthesis of labelled PNA oligomers by a post-synthetic modification approach. Bioorganic and<br>Medicinal Chemistry Letters, 2003, 13, 391-393.                                                                                                                                                | 1.0  | 7         |
| 187 | Properties of Triple Helices Formed by Oligonucleotides Containing 8-Aminopurines. Nucleosides,<br>Nucleotides and Nucleic Acids, 2003, 22, 645-648.                                                                                                                                            | 0.4  | 3         |
| 188 | Hoogsteen-Based Parallel-Stranded Duplexes of DNA. Effect of 8-Amino-purine Derivatives. Journal of the American Chemical Society, 2002, 124, 3133-3142.                                                                                                                                        | 6.6  | 38        |
| 189 | Towards DNA-Mediated Self Assembly of Carbon Nanotube Molecular Devices. AIP Conference<br>Proceedings, 2002, , .                                                                                                                                                                               | 0.3  | 4         |
| 190 | Carbon nanotubes with DNA recognition. Nature, 2002, 420, 761-761.                                                                                                                                                                                                                              | 13.7 | 490       |
| 191 | Solid-phase peptide synthesis using Nα-trityl-amino acids. International Journal of Peptide Research and<br>Therapeutics, 2001, 8, 331-338.                                                                                                                                                     | 0.1  | 2         |
| 192 | Parallel-stranded hairpins containing 8-aminopurines. novel efficient probes for triple-helix formation. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1761-1763.                                                                                                                       | 1.0  | 15        |
| 193 | Solid-phase peptide synthesis using Nα-trityl-amino acids. International Journal of Peptide Research and<br>Therapeutics, 2001, 8, 331-338.                                                                                                                                                     | 0.1  | 9         |
| 194 | Synthesis and Binding Properties of Oligonucleotides Carrying Nuclear Localization Sequences.<br>Bioconjugate Chemistry, 1999, 10, 1005-1012.                                                                                                                                                   | 1.8  | 47        |
| 195 | Stepwise solid-phase synthesis of oligonucleotide-peptide hybrids. Tetrahedron Letters, 1994, 35, 2733-2736.                                                                                                                                                                                    | 0.7  | 50        |
| 196 | Solid-phase N-glycopeptide synthesis using allyl side-chain protected Fmoc-amino acids. Tetrahedron<br>Letters, 1994, 35, 1033-1034.                                                                                                                                                            | 0.7  | 42        |
| 197 | Use of a Base-Labile Protected Derivative of 6-Mercaptohexanol for the Preparation of<br>Oligonucleotides Containing a Thiol Group at the 5′-End. Nucleosides & Nucleotides, 1993, 12, 993-1005.                                                                                                | 0.5  | 7         |
|     |                                                                                                                                                                                                                                                                                                 |      |           |

Solid-phase synthesis of new glycosyl enkephalinamides. , 1991, , 416-417.

| #   |                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| #   | ARTICLE                                                                                                                                                                                                                                     | IF  | CHAHONS   |
| 199 | Improved method for the synthesis of o-glycosylated fmoc amino acids to be used in solid-phase<br>glycopeptide synthesis (Fmoc = fluoren-9-ylmethoxycarbonyl). Journal of the Chemical Society<br>Chemical Communications, 1990, , 965-967. | 2.0 | 30        |
| 200 | CHAPTER 18. Solid-Phase Peptide Synthesis, the State of the Art: Challenges and Opportunities. RSC Drug Discovery Series, 0, , 518-550.                                                                                                     | 0.2 | 13        |
| 201 | Solid-Phase Peptide Synthesis Using a Four-Dimensional (Safety-Catch) Protecting Group Scheme.<br>Journal of Organic Chemistry, 0, , .                                                                                                      | 1.7 | 2         |
| 202 | 2-Methoxy-4-methylsulfinylbenzyl Alcohol as a Safety-Catch Linker for the Fmoc/ <i>t</i> Bu Solid-Phase<br>Peptide Synthesis Strategy. Journal of Organic Chemistry, 0, , .                                                                 | 1.7 | 4         |