
Andrey S Zaitsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1687315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RELATIONSHIP AMONG THE SPECIES RICHNESS OF DIFFERENT TAXA. Ecology, 2006, 87, 1886-1895.	3.2	205

2 The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0 0 0 rgBT /Overlock 10 Tr

3	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to	1.9	178
0	human İmpacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	170
4	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
5	Successional changes of Collembola and soil microbiota during forest rotation. Oecologia, 2003, 137, 269-276.	2.0	78
6	Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia, 2001, 45, 451-466.	1.2	68
7	Landâ€use type and intensity differentially filter traits in above―and belowâ€ground arthropod communities. Journal of Animal Ecology, 2017, 86, 511-520.	2.8	62
8	Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biology and Biochemistry, 2002, 34, 1919-1927.	8.8	59
9	Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metallurgical plant. Pedobiologia, 2001, 45, 467-479.	1.2	53
10	Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Forest Ecology and Management, 2011, 262, 317-324.	3.2	52
11	Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Applied Soil Ecology, 2012, 59, 73-86.	4.3	50
12	Microbial links and element flows in nested detrital food-webs. Pedobiologia, 2003, 47, 213-224.	1.2	46
13	Long-term succession of oribatid mites after conversion of croplands to grasslands. Applied Soil Ecology, 2006, 34, 230-239.	4.3	46
14	Why are forest fires generally neglected in soil fauna research? A mini-review. Applied Soil Ecology, 2016, 98, 261-271.	4.3	40
15	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	10.4	40
16	Forest fires alter the trophic structure of soil nematode communities. Soil Biology and Biochemistry, 2017, 109, 107-117.	8.8	37
17	Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Applied Soil Ecology, 2014, 83, 101-108.	4.3	36
18	Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Applied Soil Ecology, 2016, 107, 79-90.	4.3	31

ANDREY S ZAITSEV

#	Article	IF	CITATIONS
19	Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landscape Ecology, 2013, 28, 285-296.	4.2	29
20	Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Applied Soil Ecology, 2008, 40, 491-498.	4.3	27
21	Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Scientific Reports, 2017, 7, 41388.	3.3	25
22	Ionizing radiation effects on soil biota: Application of lessons learned from Chernobyl accident for radioecological monitoring. Pedobiologia, 2014, 57, 5-14.	1.2	22
23	Trait-specific response of soil macrofauna to forest burning along a macrogeographic gradient. Applied Soil Ecology, 2017, 112, 97-100.	4.3	22
24	Forest fire induces shortâ€ŧerm shifts in soil food webs with consequences for carbon cycling. Ecology Letters, 2021, 24, 438-450.	6.4	22
25	Regional Conditions and Land-Use Alter the Potential Contribution of Soil Arthropods to Ecosystem Services in Grasslands. Frontiers in Ecology and Evolution, 2016, 3, .	2.2	21
26	Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Applied Soil Ecology, 2014, 76, 60-67.	4.3	17
27	Diversity of the soil biota in burned areas of southern taiga forests (Tver oblast). Eurasian Soil Science, 2016, 49, 358-366.	1.6	16
28	Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production. Science of the Total Environment, 2020, 710, 136352.	8.0	16
29	Earthworm bioturbation stabilizes carbon in non-flooded paddy soil at the risk of increasing methane emissions under wet soil conditions. Soil Biology and Biochemistry, 2015, 91, 127-132.	8.8	14
30	Enchytraeids simultaneously stimulate rice straw degradation and mitigate CO2 release in a paddy soil. Soil Biology and Biochemistry, 2019, 131, 191-194.	8.8	13
31	Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma, 2018, 332, 173-179.	5.1	12
32	The earthworm species Eisenia fetida accelerates the decomposition rate of cigarette butts on the soil surface. Soil Biology and Biochemistry, 2020, 151, 108022.	8.8	10
33	Geographic determinants ofÂoribatid mite communities structure andÂdiversity across Europe: aÂlongitudinal perspective. European Journal of Soil Biology, 2006, 42, S358-S361.	3.2	9
34	Relationship between soil invertebrate abundance and soil heavy metal contents in the environs of the Kosogorsky Metallurgical Plant, Tula oblast. Russian Journal of Ecology, 2010, 41, 67-70.	0.9	9
35	Soil nematode communities in temperate rice-growing systems. European Journal of Soil Biology, 2019, 93, 103099.	3.2	9
36	Level of soil moisture determines the ability of Eisenia fetida to re-incorporate carbon from decomposed rice straw into the soil. European Journal of Soil Biology, 2020, 99, 103209.	3.2	9

ANDREY S ZAITSEV

#	Article	IF	CITATIONS
37	Forest fires increase variability of soil macrofauna communities along a macrogeographic gradient. European Journal of Soil Biology, 2017, 80, 49-52.	3.2	8
38	Reduced functionality of soil food webs in burnt boreal forests: a case study in Central Russia. Contemporary Problems of Ecology, 2017, 10, 277-285.	0.7	8
39	Enchytraeid Community (Annelida, Clitellata, Enchytraeidae) and Its Dependence on Edaphic Conditions in Rice Agroecosystems in Russia. Russian Journal of Ecology, 2019, 50, 384-390.	0.9	7
40	Disentangling the drivers of ground-dwelling macro-arthropod metacommunity structure at two different spatial scales. Soil Biology and Biochemistry, 2019, 130, 55-62.	8.8	7
41	Trophic structure of ecosystems and ecotoxicology of soil organisms. Russian Journal of Ecology, 2000, 31, 190-197.	0.9	6
42	The earthworm species Eisenia fetida modulates greenhouse gas release and carbon stabilization after rice straw amendment to a paddy soil. European Journal of Soil Biology, 2018, 89, 39-44.	3.2	6
43	Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia, 2021, 84, 150703.	1.2	6
44	Impact of rocket propellant (unsymmetrical dimetylhydrazine) on soil fauna. Doklady Earth Sciences, 2011, 440, 1340-1342.	0.7	5
45	Belowground Tritrophic Food Chain Modulates Soil Respiration in Grasslands. Pedosphere, 2018, 28, 114-123.	4.0	5
46	Mechanisms of soil macrofauna community sustainability in temperate rice-growing systems. Scientific Reports, 2019, 9, 10197.	3.3	5
47	Greenhouse gas-producing soil biological activity in burned and unburned forests along a transect in European Russia. Applied Soil Ecology, 2020, 148, 103491.	4.3	5
48	Springtail (Hexapoda: Collembola) functional group composition varies between different biotopes in Russian rice growing systems. European Journal of Soil Biology, 2020, 99, 103208.	3.2	5
49	The role of spatial heterogeneity of the environment in soil fauna recovery after fires. Doklady Earth Sciences, 2016, 471, 1265-1268.	0.7	4
50	Fertilization Rapidly Alters the Feeding Activity of Grassland Soil Mesofauna Independent of Management History. Frontiers in Ecology and Evolution, 0, 10, .	2.2	4
51	Oribatid mite communities (Acari: Oribatida) in different habitats of the Polistovsky Nature Reserve (Pskov Region, Russia). Estonian Journal of Ecology, 2013, 62, 276.	0.5	3
52	Incorporation of marine organic matter by terrestrial detrital food webs: abiotic vs. biotic vectors. Catena, 2022, 211, 106010.	5.0	3
53	Prof. Dr. Dmitry A. Krivolutsky (October 04, 1939–October 30, 2004). Applied Soil Ecology, 2005, 30, 1-2.	4.3	1
54	Viracochiella orientalis, a new species of oribatid mites (Acariformes, Oribatida) of the family Ceratozetidae from Sakhalin. Entomological Review, 2008, 88, 874-877.	0.3	1

ANDREY S ZAITSEV

#	Article	IF	CITATIONS
55	Soil macrofauna of the south of Kunashir Island (Kuril Islands, Russia). Doklady Biological Sciences, 2014, 457, 240-243.	0.6	1
56	Shifts in Soil Testate Amoeba Communities Associated with Forest Diversification. Microbial Ecology, 2015, 69, 884-894.	2.8	1
57	Rice Straw Decomposition by Woodlice (Isopoda, Oniscidea) and Millipedes (Myriapoda, Diplopoda) in the Soils of Kalmykia in a Laboratory Experiment. Arid Ecosystems, 2020, 10, 251-254.	0.8	1
58	Potential anthropogenic influence on oribatid mite communities in ancient to modern settlements of the Russian Far East. International Journal of Acarology, 2020, 46, 322-326.	0.7	1
59	"Hollows―in the spatial distribution of earthworms in a meadow steppe. Doklady Biological Sciences, 2006, 408, 229-232.	0.6	0