## Nikolay A Kosinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686861/publications.pdf

Version: 2024-02-01

172457 149698 3,480 60 29 56 citations h-index g-index papers 65 65 65 3314 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A scanning pulse reaction technique for transient analysis of the methanol-to-hydrocarbons reaction. Catalysis Today, 2023, 417, 113740.                                                                                        | 4.4  | 4         |
| 2  | Understanding the Preparation and Reactivity of Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts. Chemistry - A European Journal, 2022, 28, .                                                                                   | 3.3  | 13        |
| 3  | Alkali catalyzes methanethiol synthesis from CO and H2S. Journal of Catalysis, 2022, 405, 116-128.                                                                                                                              | 6.2  | 8         |
| 4  | Synthesis of Nanocrystalline Mordenite Zeolite with Improved Performance in Benzene Alkylation and nâ€Paraffins Hydroconversion. ChemCatChem, 2022, 14, .                                                                       | 3.7  | 6         |
| 5  | Protection Strategies for the Conversion of Biobased Furanics to Chemical Building Blocks. ACS Sustainable Chemistry and Engineering, 2022, 10, 3116-3130.                                                                      | 6.7  | 13        |
| 6  | Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO <sub>2</sub> Catalysts. Angewandte Chemie - International Edition, 2022, 61, .                               | 13.8 | 16        |
| 7  | Amorphous Silicaâ€Alumina as Suitable Catalyst for the Dielsâ€Alder Cycloaddition of <i>2,5</i> â€Dimethylfuran and Ethylene to Biobased <i>p</i> â€Xylene. ChemCatChem, 2022, 14, .                                            | 3.7  | 3         |
| 8  | Facile synthesis of nanosized mordenite and beta zeolites with improved catalytic performance: non-surfactant diquaternary ammonium compounds as structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9, 3200-3216. | 6.0  | 11        |
| 9  | Titelbild: Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO <sub>2</sub> Catalysts (Angew. Chem. 23/2022). Angewandte Chemie, 2022, 134,                      | 2.0  | O         |
| 10 | Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catalysis Today, 2021, 369, 184-192.                                                                                                         | 4.4  | 43        |
| 11 | Metal-support interfaces in ceria-based catalysts., 2021,,.                                                                                                                                                                     |      | O         |
| 12 | Selective methanethiol-to-olefins conversion over HSSZ-13 zeolite. Chemical Communications, 2021, 57, 3323-3326.                                                                                                                | 4.1  | 8         |
| 13 | Heterogeneous catalysts for the non-oxidative conversion of methane to aromatics and olefins. , $2021, \dots$                                                                                                                   |      | 4         |
| 14 | Mechanistic study of catalytic CO <sub>2</sub> hydrogenation in a plasma by operando DRIFT spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 264004.                                                                  | 2.8  | 13        |
| 15 | Flame Synthesis of Cu/ZnO–CeO <sub>2</sub> Catalysts: Synergistic Metal–Support Interactions Promote CH <sub>3</sub> OH Selectivity in CO <sub>2</sub> Hydrogenation. ACS Catalysis, 2021, 11, 4880-4892.                       | 11.2 | 73        |
| 16 | Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nature Catalysis, 2021, 4, 469-478.                                                                                                                    | 34.4 | 244       |
| 17 | Ni–In Synergy in CO <sub>2</sub> Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.                                                                                                                               | 11.2 | 79        |
| 18 | Hierarchically porous FER zeolite obtained via FAU transformation for fatty acid isomerization. Applied Catalysis B: Environmental, 2020, 263, 118356.                                                                          | 20.2 | 22        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Investigation of the Active Phase in K-Promoted MoS <sub>2</sub> Catalysts for Methanethiol Synthesis. ACS Catalysis, 2020, 10, 1838-1846.                                                               | 11.2 | 25        |
| 20 | Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO <sub>2</sub> on Cu/CeO <sub>2</sub> . ACS Catalysis, 2020, 10, 11532-11544.                                                       | 11.2 | 92        |
| 21 | Tuning the reactivity of molybdenum (oxy)carbide catalysts by the carburization degree: CO <sub>2</sub> reduction and anisole hydrodeoxygenation. Catalysis Science and Technology, 2020, 10, 3635-3645. | 4.1  | 27        |
| 22 | Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nature Catalysis, 2020, 3, 526-533.                                                            | 34.4 | 286       |
| 23 | Hydrogenation of levulinic acid to $\hat{I}^3$ -valerolactone over Fe-Re/TiO2 catalysts. Applied Catalysis B: Environmental, 2020, 278, 119314.                                                          | 20.2 | 57        |
| 24 | Reactivity, Selectivity, and Stability of Zeoliteâ∈Based Catalysts for Methane Dehydroaromatization. Advanced Materials, 2020, 32, e2002565.                                                             | 21.0 | 86        |
| 25 | Aromatization of ethylene over zeolite-based catalysts. Catalysis Science and Technology, 2020, 10, 2774-2785.                                                                                           | 4.1  | 70        |
| 26 | Co-Aromatization of Furan and Methanol over ZSM-5â€"A Pathway to Bio-Aromatics. ACS Catalysis, 2019, 9, 8547-8554.                                                                                       | 11.2 | 29        |
| 27 | Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane<br>Hydroisomerization. ChemCatChem, 2019, 11, 2754-2754.                                                         | 3.7  | 0         |
| 28 | Hierarchically Porous (Alumino)Silicates Prepared by an Imidazole-Based Surfactant and Their Application in Acid-Catalyzed Reactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40151-40162.   | 8.0  | 8         |
| 29 | A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation. Journal of Catalysis, 2019, 370, 321-331.                                                                           | 6.2  | 40        |
| 30 | Mild dealumination of template-stabilized zeolites by NH <sub>4</sub> F. Catalysis Science and Technology, 2019, 9, 4239-4247.                                                                           | 4.1  | 16        |
| 31 | Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts.<br>Angewandte Chemie - International Edition, 2019, 58, 7068-7072.                                              | 13.8 | 65        |
| 32 | Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane Hydroisomerization. ChemCatChem, 2019, 11, 2803-2811.                                                            | 3.7  | 14        |
| 33 | Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts.<br>Angewandte Chemie, 2019, 131, 7142-7146.                                                                     | 2.0  | 4         |
| 34 | A versatile mono-quaternary ammonium salt as a mesoporogen for the synthesis of hierarchical zeolites. Catalysis Science and Technology, 2019, 9, 6737-6748.                                             | 4.1  | 4         |
| 35 | Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chemical Engineering Science, 2019, 198, 305-316.                                               | 3.8  | 68        |
| 36 | Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie, 2018, 130, 1028-1032.                                                                                       | 2.0  | 18        |

3

| #  | Article                                                                                                                                                                                                                                                 | IF         | CITATIONS   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 37 | Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization. Catalysis Science and Technology, 2018, 8, 916-922.                                                                                                                    | 4.1        | 47          |
| 38 | Innentitelbild: Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5 (Angew.) Tj ETQq                                                                                                                                               | 0.0.0 rgBT | /Overlock 1 |
| 39 | Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie -<br>International Edition, 2018, 57, 1016-1020.                                                                                                            | 13.8       | 128         |
| 40 | Temperature-programmed plasma surface reaction: An approach to determine plasma-catalytic performance. Applied Catalysis B: Environmental, 2018, 239, 168-177.                                                                                          | 20.2       | 57          |
| 41 | Catalytic conversion of furanic compounds over Ga-modified ZSM-5 zeolites as a route to biomass-derived aromatics. Green Chemistry, 2018, 20, 3818-3827.                                                                                                | 9.0        | 42          |
| 42 | Engineering of Transition Metal Catalysts Confined in Zeolites. Chemistry of Materials, 2018, 30, 3177-3198.                                                                                                                                            | 6.7        | 232         |
| 43 | Structure and Evolution of Confined Carbon Species during Methane Dehydroaromatization over Mo/ZSM-5. ACS Catalysis, 2018, 8, 8459-8467.                                                                                                                | 11.2       | 79          |
| 44 | Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration. Journal of Catalysis, 2017, 346, 125-133.                                                                                              | 6.2        | 147         |
| 45 | Probing the Influence of SSZâ€13 Zeolite Pore Hierarchy in Methanolâ€toâ€Olefins Catalysis by Using<br>Nanometer Accuracy by Stochastic Chemical Reactions Fluorescence Microscopy and Positron<br>Emission Profiling. ChemCatChem, 2017, 9, 3470-3477. | 3.7        | 19          |
| 46 | Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis?. ACS Catalysis, 2017, 7, 520-529.                                                                                                                                           | 11.2       | 155         |
| 47 | Comment on "Efficient Conversion of Methane to Aromatics by Coupling Methylation Reaction― ACS Catalysis, 2017, 7, 4485-4487.                                                                                                                           | 11.2       | 6           |
| 48 | Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chemical Science, 2016, 7, 6506-6513.                                                                                                                  | 7.4        | 21          |
| 49 | Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane<br>Dehydroaromatization. Angewandte Chemie - International Edition, 2016, 55, 15086-15090.                                                                              | 13.8       | 94          |
| 50 | Competitive Adsorption of Substrate and Solvent in Snâ€Beta Zeolite During Sugar Isomerization. ChemSusChem, 2016, 9, 3145-3149.                                                                                                                        | 6.8        | 36          |
| 51 | Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane<br>Dehydroaromatization. Angewandte Chemie, 2016, 128, 15310-15314.                                                                                                     | 2.0        | 18          |
| 52 | Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. Chemical Communications, 2016, 52, 3227-3230.                                                                                                                                        | 4.1        | 36          |
| 53 | Trimodal Porous Hierarchical SSZ-13 Zeolite with Improved Catalytic Performance in the Methanol-to-Olefins Reaction. ACS Catalysis, 2016, 6, 2163-2177.                                                                                                 | 11.2       | 116         |
| 54 | Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499, 65-79.                                                                                                                                             | 8.2        | 435         |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes. Journal of Membrane Science, 2015, 484, 140-145.                                       | 8.2  | 98        |
| 56 | High flux high-silica SSZ-13 membrane for CO <sub>2</sub> separation. Journal of Materials Chemistry A, 2014, 2, 13083-13092.                                                 | 10.3 | 142       |
| 57 | Improving separation performance of high-silica zeolite membranes by surface modification with triethoxyfluorosilane. Microporous and Mesoporous Materials, 2014, 194, 24-30. | 4.4  | 31        |
| 58 | Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and Mesoporous Materials, 2014, 197, 268-277.           | 4.4  | 41        |
| 59 | Synthesis and separation properties of an $\hat{l}\pm$ -alumina-supported high-silica MEL membrane. Journal of Membrane Science, 2013, 447, 12-18.                            | 8.2  | 24        |
| 60 | Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO <sub>2</sub> Catalysts. Angewandte Chemie, 0, , .          | 2.0  | 0         |