
Chengkai Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686686/publications.pdf Version: 2024-02-01

CHENCKAL DAL

#	Article	IF	CITATIONS
1	Heat Shock Factor 1 Is a Powerful Multifaceted Modifier of Carcinogenesis. Cell, 2007, 130, 1005-1018.	28.9	757
2	HSF1: Guardian of Proteostasis in Cancer. Trends in Cell Biology, 2016, 26, 17-28.	7.9	166
3	MEK Guards Proteome Stability and Inhibits Tumor-Suppressive Amyloidogenesis via HSF1. Cell, 2015, 160, 729-744.	28.9	138
4	Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. Journal of Clinical Investigation, 2012, 122, 3742-3754.	8.2	118
5	The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160525.	4.0	78
6	Suppression of the <scp>HSF</scp> 1â€mediated proteotoxic stress response by the metabolic stress sensor <scp>AMPK</scp> . EMBO Journal, 2015, 34, 275-293.	7.8	76
7	HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nature Cell Biology, 2016, 18, 527-539.	10.3	70
8	Proteotoxic stress of cancer: Implication of the heatâ€ s hock response in oncogenesis. Journal of Cellular Physiology, 2012, 227, 2982-2987.	4.1	65
9	mTORC1 senses stresses: Coupling stress to proteostasis. BioEssays, 2017, 39, 1600268.	2.5	59
10	Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Molecular Cell, 2019, 76, 546-561.e8.	9.7	28
11	Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cellular and Molecular Life Sciences, 2016, 73, 4231-4248.	5.4	17
12	HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection. Science Advances, 2020, 6, .	10.3	13
13	Multifaceted Roles of Heat Shock Factor 1 (HSF 1) in Cancer. Heat Shock Proteins, 2020, , 101-116.	0.2	0
14	Heat shock factor 1 is a direct anti-amyloid factor: connecting neurodegeneration and uncontrolled growth. Neural Regeneration Research, 2022, 17, 559.	3.0	0
15	HSF1 is a Direct, Master AMPK Antagonist to Control Protein Cholesteroylation. SSRN Electronic Journal, 0, , .	0.4	0