## Franck Prugnolle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686184/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A population genetic perspective on the origin, spread and adaptation of the human malaria agents<br><i>Plasmodium falciparum</i> and <i>Plasmodium vivax</i> . FEMS Microbiology Reviews, 2022, 46, .                       | 8.6  | 7         |
| 2  | The origin of <i>Plasmodium vivax</i> : science or story telling?. FEMS Microbiology Reviews, 2022, 46, .                                                                                                                    | 8.6  | 1         |
| 3  | Evolutionary history of Plasmodium vivax and Plasmodium simium in the Americas. Malaria Journal, 2022, 21, 141.                                                                                                              | 2.3  | 2         |
| 4  | Using haematophagous fly blood meals to study the diversity of bloodâ€borne pathogens infecting wild mammals. Molecular Ecology Resources, 2022, 22, 2915-2927.                                                              | 4.8  | 4         |
| 5  | Multiresistant Enterobacteriaceae in yellowâ€legged gull chicks in their first weeks of life. Ecology<br>and Evolution, 2022, 12, .                                                                                          | 1.9  | 4         |
| 6  | Evolutionary analyses of the major variant surface antigen-encoding genes reveal population<br>structure of Plasmodium falciparum within and between continents. PLoS Genetics, 2021, 17, e1009269.                          | 3.5  | 20        |
| 7  | Surgical Treatment of Oesophagostomum spp. Nodular Infection in a Chimpanzee at the CIRMF<br>Primatology Center, Gabon. Case Reports in Veterinary Medicine, 2021, 2021, 1-5.                                                | 0.2  | 2         |
| 8  | Population genomic evidence of <i>Plasmodium vivax</i> Southeast Asian origin. Science Advances, 2021, 7, .                                                                                                                  | 10.3 | 21        |
| 9  | Detection of Ebola Virus Antibodies in Fecal Samples of Great Apes in Gabon. Viruses, 2020, 12, 1347.                                                                                                                        | 3.3  | 8         |
| 10 | Human Plasmodium vivax diversity, population structure and evolutionary origin. PLoS Neglected Tropical Diseases, 2020, 14, e0008072.                                                                                        | 3.0  | 26        |
| 11 | Rodent malaria in Gabon: Diversity and host range. International Journal for Parasitology: Parasites and Wildlife, 2019, 10, 117-124.                                                                                        | 1.5  | 14        |
| 12 | Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biology, 2019, 17, e3000490.                                                      | 5.6  | 38        |
| 13 | Natural <i>Wolbachia</i> infections are common in the major malaria vectors in Central Africa.<br>Evolutionary Applications, 2019, 12, 1583-1594.                                                                            | 3.1  | 36        |
| 14 | Recent Adaptive Acquisition by African Rainforest Hunter-Gatherers of the Late Pleistocene Sickle-Cell<br>Mutation Suggests Past Differences in Malaria Exposure. American Journal of Human Genetics, 2019,<br>104, 553-561. | 6.2  | 33        |
| 15 | Title is missing!. , 2019, 17, e3000490.                                                                                                                                                                                     |      | 0         |
| 16 | Title is missing!. , 2019, 17, e3000490.                                                                                                                                                                                     |      | 0         |
| 17 | Title is missing!. , 2019, 17, e3000490.                                                                                                                                                                                     |      | 0         |
|    |                                                                                                                                                                                                                              |      |           |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Title is missing!. , 2019, 17, e3000490.                                                                                                                                                                               |      | Ο         |
| 20 | Title is missing!. , 2019, 17, e3000490.                                                                                                                                                                               |      | 0         |
| 21 | Extensive diversity of malaria parasites circulating in Central African bats and monkeys. Ecology and Evolution, 2018, 8, 10578-10586.                                                                                 | 1.9  | 14        |
| 22 | Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.<br>Nature Microbiology, 2018, 3, 687-697.                                                                                | 13.3 | 129       |
| 23 | Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLoS Biology, 2018, 16, e2006035.                                                                                | 5.6  | 32        |
| 24 | Haemosporidian Parasites of Reptiles and Birds from Gabon, Central Africa. Journal of Parasitology, 2017, 103, 330.                                                                                                    | 0.7  | 9         |
| 25 | "Show me which parasites you carry and I will tell you what you eatâ€; or how to infer the trophic<br>behavior of hematophagous arthropods feeding on wildlife. Ecology and Evolution, 2017, 7, 7578-7584.             | 1.9  | 12        |
| 26 | Evolutionary structure of <i>Plasmodium falciparum</i> major variant surface antigen genes in<br>South America: Implications for epidemic transmission and surveillance. Ecology and Evolution, 2017,<br>7, 9376-9390. | 1.9  | 16        |
| 27 | Might Interspecific Interactions between Pathogens Drive Host Evolution? The Case of Plasmodium Species and Duffy-Negativity in Human Populations. Trends in Parasitology, 2017, 33, 21-29.                            | 3.3  | 7         |
| 28 | African Non-Human Primates Host Diverse Enteroviruses. PLoS ONE, 2017, 12, e0169067.                                                                                                                                   | 2.5  | 29        |
| 29 | Tracking zoonotic pathogens using blood-sucking flies as 'flying syringes'. ELife, 2017, 6, .                                                                                                                          | 6.0  | 35        |
| 30 | Ape malaria transmission and potential for ape-to-human transfers in Africa. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 5329-5334.                                 | 7.1  | 59        |
| 31 | The host specificity of ape malaria parasites can be broken in confined environments. International<br>Journal for Parasitology, 2016, 46, 737-744.                                                                    | 3.1  | 30        |
| 32 | Haemosporidian Parasites of Antelopes and Other Vertebrates from Gabon, Central Africa. PLoS ONE, 2016, 11, e0148958.                                                                                                  | 2.5  | 36        |
| 33 | Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee.<br>Malaria Journal, 2015, 14, 220.                                                                                    | 2.3  | 17        |
| 34 | Genetic diversity of Plasmodium falciparum isolates from Baka Pygmies and their Bantu neighbours in<br>the north of Gabon. Malaria Journal, 2015, 14, 395.                                                             | 2.3  | 0         |
| 35 | High Rate of Simian Immunodeficiency Virus (SIV) Infections in Wild Chimpanzees in Northeastern<br>Gabon. Viruses, 2015, 7, 4997-5015.                                                                                 | 3.3  | 10        |
| 36 | No Evidence for Ape Plasmodium Infections in Humans in Gabon. PLoS ONE, 2015, 10, e0126933.                                                                                                                            | 2.5  | 27        |

FRANCK PRUGNOLLE

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | First Detection of an Enterovirus C99 in a Captive Chimpanzee with Acute Flaccid Paralysis, from the<br>Tchimpounga Chimpanzee Rehabilitation Center, Republic of Congo. PLoS ONE, 2015, 10, e0136700.                                    | 2.5  | 30        |
| 38 | Malaria continues to select for sickle cell trait in Central Africa. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7051-7054.                                                               | 7.1  | 88        |
| 39 | Diversity of malaria parasites in great apes in Gabon. Malaria Journal, 2015, 14, 111.                                                                                                                                                    | 2.3  | 42        |
| 40 | Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nature Communications, 2014, 5, 4754.                                                                                           | 12.8 | 124       |
| 41 | Patterns of selection on <i><scp>P</scp>lasmodium falciparum</i> erythrocyteâ€binding antigens after<br>the colonization of the <scp>N</scp> ew <scp>W</scp> orld. Molecular Ecology, 2014, 23, 1979-1993.                                | 3.9  | 8         |
| 42 | Prevalence of the Sickle Cell Trait in Gabon: A nationwide study. Infection, Genetics and Evolution, 2014, 25, 52-56.                                                                                                                     | 2.3  | 16        |
| 43 | Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa. Infection, Genetics and Evolution, 2014, 28, 628-634.                                                    | 2.3  | 11        |
| 44 | Diversity, host switching and evolution of <i>Plasmodium vivax</i> infecting African great apes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8123-8128.                                | 7.1  | 82        |
| 45 | Anopheles moucheti and Anopheles vinckei Are Candidate Vectors of Ape Plasmodium Parasites,<br>Including Plasmodium praefalciparum in Gabon. PLoS ONE, 2013, 8, e57294.                                                                   | 2.5  | 40        |
| 46 | Multiple independent introductions of <i>Plasmodium falciparum</i> in South America. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 511-516.                                                 | 7.1  | 100       |
| 47 | Isolation of Plasmodium falciparum by flow-cytometry: implications for single-trophozoite<br>genotyping and parasite DNA purification for whole-genome high-throughput sequencing of archival<br>samples. Malaria Journal, 2012, 11, 163. | 2.3  | 18        |
| 48 | Reply to Sharp et al.: Host species sampling bias and <i>Plasmodium falciparum</i> origin paradigm<br>shifts. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>E873.                        | 7.1  | 4         |
| 49 | African monkeys are infected by <i>Plasmodium falciparum</i> nonhuman primate-specific strains.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11948-11953.                               | 7.1  | 62        |
| 50 | Plasmodium falciparumis not as lonely as previously considered. Virulence, 2011, 2, 71-76.                                                                                                                                                | 4.4  | 10        |
| 51 | A Fresh Look at the Origin of Plasmodium falciparum, the Most Malignant Malaria Agent. PLoS<br>Pathogens, 2011, 7, e1001283.                                                                                                              | 4.7  | 90        |
| 52 | Plasmodium falciparum Accompanied the Human Expansion out of Africa. Current Biology, 2010, 20,<br>1283-1289.                                                                                                                             | 3.9  | 121       |
| 53 | African great apes are natural hosts of multiple related malaria species, including <i>Plasmodium<br/>falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 1458-1463.          | 7.1  | 229       |
| 54 | A New Malaria Agent in African Hominids. PLoS Pathogens, 2009, 5, e1000446.                                                                                                                                                               | 4.7  | 127       |

FRANCK PRUGNOLLE

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A comparison of Anopheles gambiae and Plasmodium falciparum genetic structure over space and time.<br>Microbes and Infection, 2008, 10, 269-275.    | 1.9 | 23        |
| 56 | Selection shapes malaria genomes and drives divergence between pathogens infecting hominids versus rodents. BMC Evolutionary Biology, 2008, 8, 223. | 3.2 | 5         |
| 57 | Geography predicts neutral genetic diversity of human populations. Current Biology, 2005, 15, R159-R160.                                            | 3.9 | 344       |
| 58 | Pathogen-Driven Selection and Worldwide HLA Class I Diversity. Current Biology, 2005, 15, 1022-1027.                                                | 3.9 | 449       |
| 59 | Geography is a better determinant of human genetic differentiation than ethnicity. Human Genetics, 2005, 118, 366-371.                              | 3.8 | 122       |