Marino B Arnao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685479/publications.pdf

Version: 2024-02-01

34105 31849 10,706 109 52 101 citations h-index g-index papers 111 111 111 6771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functions of Melatonin during Postharvest of Horticultural Crops. Plant and Cell Physiology, 2023, 63, 1764-1786.	3.1	51
2	Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. Journal of Plant Growth Regulation, 2022, 41, 922-935.	5.1	16
3	Phytomelatonin: an unexpected molecule with amazing performances in plants. Journal of Experimental Botany, 2022, 73, 5779-5800.	4.8	62
4	Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules, 2022, 27, 1523.	3.8	9
5	Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life, 2022, 12, 479.	2.4	57
6	Melatonin as a Possible Natural Safener in Crops. Plants, 2022, 11, 890.	3.5	21
7	Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. Physiologia Plantarum, 2021, 172, 820-846.	5.2	75
8	Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biology, 2021, 23, 7-19.	3.8	99
9	Melatonin against environmental plant stressors: a review. Current Protein and Peptide Science, 2021, 21, 413-429.	1.4	31
10	Melatonin as a plant biostimulant in crops and during postâ∈harvest: a new approach is needed. Journal of the Science of Food and Agriculture, 2021, 101, 5297-5304.	3. 5	39
11	Melatonin and Carbohydrate Metabolism in Plant Cells. Plants, 2021, 10, 1917.	3.5	35
12	Adiponectin agonist treatment in diabetic pregnant rats. Journal of Endocrinology, 2021, 251, 1-13.	2.6	6
13	Regulatory Role of Melatonin in the Redox Network of Plants and Plant Hormone Relationship in Stress. Plant in Challenging Environments, 2021, , 235-272.	0.4	6
14	A Phytomelatonin-Rich Extract Obtained from Selected Herbs with Application as Plant Growth Regulator. Plants, 2021, 10, 2143.	3.5	3
15	Is Phytomelatonin a New Plant Hormone?. Agronomy, 2020, 10, 95.	3.0	102
16	Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules, 2020, 25, 5359.	3.8	79
17	Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants, 2020, 9, 809.	5.1	95
18	Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. Frontiers in Plant Science, 2020, 11, 572087.	3.6	50

#	Article	IF	CITATIONS
19	Melatonin Suppressed the Heat Stress-Induced Damage in Wheat Seedlings by Modulating the Antioxidant Machinery. Plants, 2020, 9, 809.	3.5	99
20	Development of a Phytomelatonin-Rich Extract from Cultured Plants with Excellent Biochemical and Functional Properties as an Alternative to Synthetic Melatonin. Antioxidants, 2020, 9, 158.	5.1	19
21	Melatonin and Its Protective Role against Biotic Stress Impacts on Plants. Biomolecules, 2020, 10, 54.	4.0	153
22	Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction, 2020, 33, 77-87.	2.2	150
23	A colorimetric method for the determination of different functional flavonoids using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and peroxidase. Preparative Biochemistry and Biotechnology, 2019, 49, 1033-1039.	1.9	3
24	Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. Agronomy, 2019, 9, 570.	3.0	45
25	Role of Melatonin to Enhance Phytoremediation Capacity. Applied Sciences (Switzerland), 2019, 9, 5293.	2.5	43
26	Melatonin: A New Plant Hormone and/or a Plant Master Regulator?. Trends in Plant Science, 2019, 24, 38-48.	8.8	548
27	Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Research, 2019, 2, 152-168.	1.1	118
28	Melatonin and its relationship to plant hormones. Annals of Botany, 2018, 121, 195-207.	2.9	415
29	Melatonin and Its Effects on Plant Systems. Molecules, 2018, 23, 2352.	3.8	157
30	Phytomelatonin, natural melatonin from plants as a novel dietary supplement: Sources, activities and world market. Journal of Functional Foods, 2018, 48, 37-42.	3.4	33
31	Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses. Agronomy, 2018, 8, 33.	3.0	100
32	The Potential of Phytomelatonin as a Nutraceutical. Molecules, 2018, 23, 238.	3.8	68
33	The Multi-Regulatory Properties of Melatonin in Plants. , 2018, , 71-101.		10
34	Phytomelatonin versus synthetic melatonin in cancer treatments. Biomedical Research and Clinical Practice, 2018, 3, .	0.3	2
35	Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	104
36	Longâ€term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats. Journal of the Science of Food and Agriculture, 2016, 96, 3079-3087.	3.5	17

#	Article	IF	CITATIONS
37	Validation of three automated assays for total antioxidant capacity determination in canine serum samples. Journal of Veterinary Diagnostic Investigation, 2016, 28, 693-698.	1.1	27
38	Phytomelatonin, an Interesting Tool for Agricultural Crops. Focus on Sciences, 2016, 2, 1-10.	0.2	10
39	Functions of melatonin in plants: a review. Journal of Pineal Research, 2015, 59, 133-150.	7.4	644
40	Phytomelatonin: Searching for Plants with High Levels for Use as a Natural Nutraceutical. Studies in Natural Products Chemistry, 2015, 46, 519-545.	1.8	17
41	Melatonin: synthesis from tryptophan and its role in higher plant , 2015, , 390-435.		21
42	Phytomelatonin: Discovery, Content, and Role in Plants. Advances in Botany, 2014, 2014, 1-11.	3.4	105
43	Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chemistry, 2014, 160, 134-140.	8.2	58
44	Melatonin: plant growth regulator and/or biostimulator during stress?. Trends in Plant Science, 2014, 19, 789-797.	8.8	502
45	Molecular mechanisms by which white tea prevents oxidative stress. Journal of Physiology and Biochemistry, 2014, 70, 891-900.	3.0	20
46	Growth conditions determine different melatonin levels in <i><scp>L</scp>upinus albus </i> <scp>L</scp> . Journal of Pineal Research, 2013, 55, 149-155.	7.4	142
47	Growth conditions influence the melatonin content of tomato plants. Food Chemistry, 2013, 138, 1212-1214.	8.2	99
48	Protective effect of white tea extract against acute oxidative injury caused by adriamycin in different tissues. Food Chemistry, 2012, 134, 1780-1785.	8.2	28
49	Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochemical Analysis, 2009, 20, 14-18.	2.4	53
50	Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 2009, 46, 58-63.	7.4	319
51	Chemical stress by different agents affects the melatonin content of barley roots. Journal of Pineal Research, 2009, 46, 295-299.	7.4	165
52	Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regulation, 2008, 55, 29-34.	3.4	96
53	Distribution of Melatonin in Different Zones of Lupin and Barley Plants at Different Ages in the Presence and Absence of Light. Journal of Agricultural and Food Chemistry, 2008, 56, 10567-10573.	5.2	102
54	Melatonin in Plants. Plant Signaling and Behavior, 2007, 2, 381-382.	2.4	30

#	Article	IF	CITATIONS
55	Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L Journal of Pineal Research, 2007, 42, 147-152.	7.4	247
56	Inhibition of ACC oxidase activity by melatonin and indole-3-acetic acid in etiolated lupin hypocotyls., 2007,, 101-103.		13
57	Changes in hydrophilic antioxidant activity in Avena sativa and Triticum aestivum leaves of different age during de-etiolation and high-light treatment. Journal of Plant Research, 2006, 119, 321-327.	2.4	9
58	The Physiological Function of Melatonin in Plants. Plant Signaling and Behavior, 2006, 1, 89-95.	2.4	242
59	Melatonin acts as a growthâ€stimulating compound in some monocot species. Journal of Pineal Research, 2005, 39, 137-142.	7.4	278
60	Hydrophilic and Lipophilic Antioxidant Activity in Different Leaves of Three Lettuce Varieties. International Journal of Food Properties, 2005, 8, 521-528.	3.0	45
61	Melatonin: a growth-stimulating compound present in lupin tissues. Planta, 2004, 220, 140-144. ACTIVIDAD ANTIOXIDANTE HIDROFÃŁICA Y LIPOFÃŁICA Y CONTENIDO EN VITAMINA C DE ZUMOS DE NARANJA	3.2	289
62	COMERCIALES: RELACIÓN CON SUS CARACTERÃSTICAS ORGANOLÉPTICAS LIPOPHILIC AND HYDROPHILIC ANTIOXIDANT ACTIVITY AND VITAMIN C CONTENT OF COMMERCIAL ORANGE JUICES: CORRELATION WITH ORGANOLEPTIC PARAMETERS ACTIVIDADE ANTIOXIDANTE HIDROFÃLICA E LIPOFÂLICA E CONTIDO EN VITAMINA C DE ZUMOS DE LARANXA COMERCIAIS: RELACIÓN COAS CARACTERÃSTICAS ORGANOLÉPTICAS. Ciencia Y	0.4	5
63	Tecnologia Alimentaria, 2004, 4, 185-189. Polar Transport of Indole-3-Acetic Acid in Relation to Rooting in Carnation Cuttings: Influence of Cold Storage Duration and Cultivar. Biologia Plantarum, 2003, 46, 481-485.	1.9	14
64	Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Analytical and Bioanalytical Chemistry, 2003, 376, 33-37.	3.7	73
65	Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 2003, 28, 59-65.	6.0	134
66	Total antioxidant activity in Quercus ilex resprouts after fire. Plant Physiology and Biochemistry, 2003, 41, 41-47.	5.8	21
67	Reactions of the Class II Peroxidases, Lignin Peroxidase andArthromyces ramosus Peroxidase, with Hydrogen Peroxide. Journal of Biological Chemistry, 2002, 277, 26879-26885.	3.4	71
68	On-line antioxidant activity determination: comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+assay. Redox Report, 2002, 7, 103-109.	4.5	52
69	Superoxide scavenging by polyphenols: effect of conjugation and dimerization. Redox Report, 2002, 7, 379-383.	4.5	33
70	Complexes Between m-chloroperoxybenzoic Acid and Horseradish Peroxidase Compounds I and II: Implications for the Kinetics of Enzyme Inactivation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 287-291.	5.2	4
71	Hydrophilic and lipophilic antioxidant activities of grapes. Molecular Nutrition and Food Research, 2002, 46, 353-356.	0.0	33
72	A peroxidase isoenzyme secreted by turnip (Brassica napus) hairy-root cultures: inactivation by hydrogen peroxide and application in diagnostic kits. Biotechnology and Applied Biochemistry, 2002, 35, 1.	3.1	76

#	Article	IF	CITATIONS
73	Catalase-like Oxygen Production by Horseradish Peroxidase Must Predominantly Be an Enzyme-Catalyzed Reaction. Archives of Biochemistry and Biophysics, 2001, 392, 295-302.	3.0	56
74	Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochemical Journal, 2001, 354, 107-114.	3.7	149
75	Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochemical Journal, 2001, 354, 107.	3.7	86
76	Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. FEBS Journal, 2001, 268, 3091-3098.	0.2	52
77	Estimation of free radical-quenching activity of leaf pigment extracts. Phytochemical Analysis, 2001, 12, 138-143.	2.4	69
78	The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate. Journal of Biological Inorganic Chemistry, 2001, 6, 504-516.	2.6	45
79	The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 2001, 73, 239-244.	8.2	1,019
80	QUANTITATION OF INDOLE-3-ACETIC ACID BY LC WITH ELECTROCHEMICAL DETECTION IN ETIOLATED HYPOCOTYLS OF LUPINUS ALBUS. Journal of Liquid Chromatography and Related Technologies, 2001, 24, 3095-3104.	1.0	20
81	Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochemical Journal, 2000, 348, 321.	3.7	31
82	Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochemical Journal, 2000, 348, 321-328.	3.7	87
83	A method to measure antioxidant activity in organic media: application to lipophilic vitamins. Redox Report, 2000, 5, 365-370.	4.5	128
84	Characterization of isoperoxidase-B2 inactivation in etiolated Lupinus albus hypocotyls. BBA - Proteins and Proteomics, 2000, 1478, 78-88.	2.1	9
85	Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science and Technology, 2000, 11, 419-421.	15.1	427
86	Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochemical Journal, 2000, 348 Pt 2, 321-8.	3.7	22
87	Methods to Measure the Antioxidant Activity in Plant Material. A Comparative Discussion. Free Radical Research, 1999, 31, 89-96.	3.3	144
88	An end-point method for estimation of the total antioxidant activity in plant material. Phytochemical Analysis, 1998, 9, 196-202.	2.4	296
89	The Inactivation and Catalytic Pathways of Horseradish Peroxidase with m-Chloroperoxybenzoic Acid. Journal of Biological Chemistry, 1997, 272, 5469-5476.	3.4	75
90	Influence of peroxides, ascorbate and glutathione on germination and growth in Lupinus albus L Biologia Plantarum, 1997, 39, 457-461.	1.9	6

#	Article	IF	CITATIONS
91	Influence of cold storage period and auxin treatment on the subsequent rooting of carnation cuttings. Scientia Horticulturae, 1996, 65, 73-84.	3.6	27
92	Inhibition of Etiolated Lupin Hypocotyl Growth and Rooting by Peroxides, Ascorbate and Glutathione. Journal of Plant Physiology, 1996, 147, 721-728.	3.5	13
93	Role of the reductant substrates on the inactivation of horseradish peroxidase by mâ€Chloroperoxybenzoic acid. IUBMB Life, 1996, 39, 97-107.	3.4	6
94	Indole-3-carbinol as a scavenger of free radicals. IUBMB Life, 1996, 39, 1125-1134.	3.4	27
95	A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnology and Bioengineering, 1996, 50, 655-662.	3.3	83
96	Inhibition byl-Ascorbic Acid and Other Antioxidants of the 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic Acid) Oxidation Catalyzed by Peroxidase: A New Approach for Determining Total Antioxidant Status of Foods. Analytical Biochemistry, 1996, 236, 255-261.	2.4	162
97	A Comparative Study of the Inactivation of Wild-Type, Recombinant and Two Mutant Horseradish Peroxidase Isoenzymes C by Hydrogen Peroxide and m-chloroperoxybenzoic Acid. FEBS Journal, 1995, 234, 506-512.	0.2	68
98	The inactivation of horseradish peroxidase by m-chloroperoxybenzoic acid, a xenobiotic hydroperoxide. Journal of Molecular Catalysis A, 1995, 104, 179-191.	4.8	9
99	Mechanistic Aspects of ACC Oxidation to Ethylene. Current Plant Science and Biotechnology in Agriculture, 1993, , 53-58.	0.0	O
100	1-Aminocyclopropane-1-carâ ylic acid as a substrate of peroxidase: conditions for oxygen consumption, hydroperoxide generation and ethylene production. BBA - Proteins and Proteomics, 1991, 1077, 273-280.	2.1	8
101	Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. BBA - Proteins and Proteomics, 1990, 1038, 85-89.	2.1	166
102	A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. BBA - Proteins and Proteomics, 1990, 1041, 43-47.	2.1	256
103	An enzymatic colorimetric method for measuring naringin using 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of peroxidase. Analytical Biochemistry, 1990, 185, 335-338.	2.4	79
104	Polyamine and Ethylene Metabolisms During Tomato Fruit Ripening., 1990,, 429-433.		0
105	Kinetic characterization of the inactivation process of two peroxidase isoenzymes in the oxidation of indolyl-3-acetic acid. BBA - Proteins and Proteomics, 1989, 996, 7-12.	2.1	26
106	Oxygen consumption and enzyme inactivation in the indolyl-3-acetic acid oxidation catalyzed by peroxidase. BBA - Proteins and Proteomics, 1988, 955, 194-202.	2.1	21
107	ABTS/TEAC (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-Equivalent Antioxidant) Tj ETQq1 i	1 0.78431	4 ₅ rgBT /Ove
108	Phytomelatonin content in Valeriana officinalis L. and some related phytotherapeutic supplements. , 0,		2

7

#	Article	IF	CITATIONS
109	Melatonin Alleviates Chilling Injury Symptom Development in Mango Fruit by Maintaining Intracellular Energy and Cell Wall and Membrane Stability. Frontiers in Nutrition, 0, 9, .	3.7	16