Mark S Workentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685460/publications.pdf

Version: 2024-02-01

201674 2,137 84 27 citations h-index papers

42 g-index 90 90 90 2414 docs citations times ranked citing authors all docs

265206

#	Article	IF	CITATIONS
1	Interrogating Near-Infrared Electrogenerated Chemiluminescence of Au ₂₅ (SC ₂ H ₄ Ph) ₁₈ ⁺ Clusters. Journal of the American Chemical Society, 2012, 134, 15205-15208.	13.7	136
2	Kinetics of the Reduction of Dialkyl Peroxides. New Insights into the Dynamics of Dissociative Electron Transfer1. Journal of the American Chemical Society, 1999, 121, 7239-7248.	13.7	103
3	NIR electrochemiluminescence from Au ₂₅ ^{â°'} nanoclusters facilitated by highly oxidizing and reducing co-reactant radicals. Chemical Science, 2014, 5, 3814-3822.	7.4	101
4	Reduction of Di-tert-Butyl Peroxide: Evidence for Nonadiabatic Dissociative Electron Transfer. Journal of the American Chemical Society, 1995, 117, 2120-2121.	13.7	84
5	Elucidation of the Electron Transfer Reduction Mechanism of Anthracene Endoperoxides. Journal of the American Chemical Society, 2004, 126, 1688-1698.	13.7	82
6	Covalently Assembled Gold Nanoparticle-Carbon Nanotube Hybrids via a Photoinitiated Carbene Addition Reaction. Chemistry of Materials, 2011, 23, 1519-1525.	6.7	71
7	Light-Activated Covalent Formation of Gold Nanoparticle–Graphene and Gold Nanoparticle–Glass Composites. Langmuir, 2011, 27, 13261-13268.	3.5	68
8	Facile synthesis of gold nanoparticle (AuNP)–carbon nanotube (CNT) hybrids through an interfacial Michael addition reaction. Chemical Communications, 2013, 49, 2831.	4.1	58
9	First Determination of the Standard Potential for the Dissociative Reduction of the Antimalarial Agent Artemisinin. Journal of Physical Chemistry B, 1998, 102, 4061-4063.	2.6	54
10	Anhydride Post-Synthetic Modification in a Hierarchical Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 4419-4428.	13.7	53
11	Dissociative Electron Transfer to Biologically Relevant Bicyclic Endoperoxides. Determination of Thermochemical Parameters. Journal of the American Chemical Society, 1998, 120, 2664-2665.	13.7	51
12	Evaluation of the Extent of Conjugation in Symmetrical and Asymmetrical Aryl-Substituted Acetophenone Azines Using Electrochemical Methods. Journal of Organic Chemistry, 2001, 66, 831-838.	3.2	51
13	A Retro-Dielsâ^Alder Reaction to Uncover Maleimide-Modified Surfaces on Monolayer-Protected Nanoparticles for Reversible Covalent Assembly. Organic Letters, 2006, 8, 4993-4996.	4.6	49
14	Interfacial strain-promoted alkyne–azide cycloaddition (I-SPAAC) for the synthesis of nanomaterial hybrids. Chemical Communications, 2013, 49, 3982.	4.1	45
15	Golden Opportunity: A Clickable Azide-Functionalized [Au ₂₅ (SR) ₁₈] ^{â^'} Nanocluster Platform for Interfacial Surface Modifications. Journal of the American Chemical Society, 2019, 141, 11781-11785.	13.7	43
16	Kinetics of Dissociative Electron Transfer to Ascaridole and Dihydroascaridole—Model Bicyclic Endoperoxides of Biological Relevance. Chemistry - A European Journal, 2001, 7, 4012-4020.	3.3	41
17	Thermodynamic and Kinetic Origins of Au ₂₅ ⁰ Nanocluster Electrochemiluminescence. Chemistry - A European Journal, 2014, 20, 15116-15121.	3.3	41
18	Chemical Modification of Monolayer-Protected Gold Nanoparticles Using Hyperbaric Conditions. Journal of the American Chemical Society, 2007, 129, 4904-4905.	13.7	35

#	Article	IF	CITATIONS
19	Norrish Type II Photochemical Reaction of an Aryl Ketone on a Monolayer-Protected Gold Nanocluster. Development of a Probe of Conformational Mobility. Organic Letters, 2000, 2, 3381-3384.	4.6	34
20	Kinetics and mechanism of the dissociative reduction of $C\hat{i}_{-,}X$ and $X\hat{i}_{-,}X$ bonds $(X\hat{i}_{-,})$ O, S). Advances in Physical Organic Chemistry, 2001, 36, 85-166.	0.5	34
21	Tip-Enhanced Raman Spectroscopy of Self-Assembled Thiolated Monolayers on Flat Gold Nanoplates Using Gaussian-Transverse and Radially Polarized Excitations. Journal of Physical Chemistry C, 2013, 117, 15639-15646.	3.1	34
22	Trialkylphosphine-Stabilized Copperâ^'Phenyltellurolate Complexes:  From Small Molecules to Nanoclusters via Condensation Reactions. Inorganic Chemistry, 2001, 40, 4678-4685.	4.0	33
23	Improved Methodology for the Preparation of Water-Soluble Maleimide-Functionalized Small Gold Nanoparticles. Langmuir, 2012, 28, 12357-12363.	3.5	32
24	Versatile strained alkyne modified water-soluble AuNPs for interfacial strain promoted azide–alkyne cycloaddition (I-SPAAC). Journal of Materials Chemistry B, 2014, 2, 1764-1769.	5.8	32
25	Efficient Synthesis of Isoxazolidine-Tethered Monolayer-Protected Gold Nanoparticles (MPGNs) via 1,3-Dipolar Cycloadditions under High-Pressure Conditions. Journal of Organic Chemistry, 2008, 73, 1099-1105.	3.2	30
26	Diazirine-Modified Gold Nanoparticle: Template for Efficient Photoinduced Interfacial Carbene Insertion Reactions. Langmuir, 2010, 26, 14958-14964.	3 . 5	28
27	Facile synthesis of Au ₂₃ (SC(CH ₃) ₃) ₁₆ clusters. Journal of Materials Chemistry C, 2014, 2, 3631-3638.	5. 5	28
28	Electron Transfer to Sulfides and Disulfides: Intrinsic Barriers and Relationship between Heterogeneous and Homogeneous Electronâ€Transfer Kinetics. Chemistry - A European Journal, 2007, 13, 7983-7995.	3.3	27
29	"Shine & Click―Photoâ€Induced Interfacial Unmasking of Strained Alkynes on Small Waterâ€Soluble Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, 1052-1059.	3.3	27
30	A Radicalâ€Anion Chain Mechanism Initiated by Dissociative Electron Transfer to a Bicyclic Endoperoxide: Insight into the Fragmentation Chemistry of Neutral Biradicals and Distonic Radical Anions. Chemistry - A European Journal, 2008, 14, 1698-1709.	3.3	26
31	Near-infrared electrochemiluminescence from Au ₂₅ (SC ₂ H ₄ Ph) ₁₈ ⁺ clusters co-reacted with tri-n-propylamine. RSC Advances, 2014, 4, 29559-29562.	3 . 6	26
32	Insights on the Application of the Retro Michael-Type Addition on Maleimide-Functionalized Gold Nanoparticles in Biology and Nanomedicine. Bioconjugate Chemistry, 2016, 27, 586-593.	3.6	26
33	Maleimideâ€Modified Phosphonium Ionic Liquids: A Template Towards (Multi)Task‧pecific Ionic Liquids. Chemistry - A European Journal, 2010, 16, 9068-9075.	3.3	23
34	Dual-Bioorthogonal Molecular Tool: "Click-to-Release―and "Double-Click―Reactivity on Small Molecules and Material Surfaces. Bioconjugate Chemistry, 2019, 30, 1140-1149.	3 . 6	23
35	Kinetics of the photoinduced dissociative electron transfer reduction of the antimalarial endoperoxide, Artemisinin. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 138, 29-34.	3.9	22
36	Expanding the scope of strained-alkyne chemistry: a protection–deprotection strategy via the formation of a dicobalt–hexacarbonyl complex. Chemical Communications, 2015, 51, 6647-6650.	4.1	22

#	Article	IF	Citations
37	Electrochemical Reduction of G3-Factor Endoperoxide and Its Methyl Ether: Evidence for a Competition between Concerted and Stepwise Dissociative Electron Transfer. Chemistry - A European Journal, 2007, 13, 1174-1179.	3.3	20
38	The Syntheses and Electrochemical Studies of a Ferrocene Substituted Diiminopyridine Ligand and Its P, S, Se, and Te Complexes. Inorganic Chemistry, 2012, 51, 8425-8432.	4.0	20
39	Peptide-decorated gold nanoparticles via strain-promoted azide–alkyne cycloaddition and post assembly deprotection. RSC Advances, 2014, 4, 43087-43091.	3.6	20
40	Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal–Organic Framework Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30296-30305.	8.0	20
41	Model dialkyl peroxides of the Fenton mechanistic probe 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH): kinetic probes for dissociative electron transfer. Organic and Biomolecular Chemistry, 2003, 1, 3418.	2.8	19
42	Water-soluble gold nanoparticles (AuNP) functionalized with a gadolinium(iii) chelate via Michael addition for use as a MRI contrast agent. Journal of Materials Chemistry B, 2013, 1, 5628.	5.8	19
43	O-Neophyl-type 1,2-phenyl rearrangement initiated by electron transfer: development of kinetic probes of dissociative electron transfer. Chemical Communications, 1999, , 135-136.	4.1	18
44	Covalent diamond–gold nanojewel hybrids via photochemically generated carbenes. Chemical Communications, 2011, 47, 7788.	4.1	18
45	Aryl Ketone Photochemistry on Monolayer Protected Clusters:  Study of the Norrish Type II Reaction as a Probe of Conformational Mobility and for Selective Surface Modification. Langmuir, 2001, 17, 7355-7363.	3.5	17
46	Michael Addition Reactions for the Modification of Gold Nanoparticles Facilitated by Hyperbaric Conditions. Langmuir, 2012, 28, 864-871.	3.5	17
47	A radical-anion chain mechanism following dissociative electron transfer reduction of the model prostaglandin endoperoxide, 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]heptane. Organic and Biomolecular Chemistry, 2008, 6, 3354.	2.8	16
48	Arresting the time-dependent H2O2 mediated synthesis of gold nanoparticles for analytical detection and preparative chemistry. Journal of Materials Chemistry B, 2013, 1, 4048.	5.8	16
49	Small gold nanoparticles for interfacial Staudinger–Bertozzi ligation. Organic and Biomolecular Chemistry, 2015, 13, 4605-4612.	2.8	16
50	Fluorogenic Gold Nanoparticle (AuNP) Substrate: A Model for the Controlled Release of Molecules from AuNP Nanocarriers via Interfacial Staudinger–Bertozzi Ligation. Langmuir, 2017, 33, 1908-1913.	3.5	16
51	Radical anion chain process initiated by a dissociative electron transfer to a monocyclic endoperoxide Chemical Communications, 2003, , 1246-1247.	4.1	15
52	Efficient Homogeneous Radicalâ€Anion Chain Reactions Initiated by Dissociative Electron Transfer to 3,3,6,6â€Tetraarylâ€1,2â€dioxanes. Chemistry - A European Journal, 2010, 16, 178-188.	3.3	14
53	The electrochemical reduction of 1,4-dichloroazoethanes: Reductive elimination of chloride to form aryl azines. Electrochimica Acta, 2010, 55, 5584-5591.	5.2	13
54	Dialkynylborane Complexes of Formazanate Ligands: Synthesis, Electronic Properties, and Reactivity. Inorganic Chemistry, 2019, 58, 834-843.	4.0	13

#	Article	IF	Citations
55	Covalent modification of graphene and micro-diamond with redox active substrates via photogenerated carbenes. Carbon, 2015, 85, 159-167.	10.3	11
56	Highly Electron-Deficient Pyridinium-Nitrones for Rapid and Tunable Inverse-Electron-Demand Strain-Promoted Alkyne-Nitrone Cycloaddition. Organic Letters, 2019, 21, 5547-5551.	4.6	11
57	Reactive Intermediates on Metal Surfaces: A Ketene Monolayer on Single Crystal Platinum Generated by Photolysis of Pyridylα-Diazoketones. Angewandte Chemie - International Edition, 2000, 39, 2144-2147.	13.8	10
58	Remarkable high-yielding chemical modification of gold nanoparticles using uncatalyzed click-type 1,3-dipolar cycloaddition chemistry and hyperbaric conditions. Canadian Journal of Chemistry, 2009, 87, 1708-1715.	1.1	9
59	Waterâ€Soluble Maleimideâ€Modified Gold Nanoparticles (AuNPs) as a Platform for Cycloaddition Reactions. European Journal of Organic Chemistry, 2015, 2015, 5438-5447.	2.4	9
60	A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2016, 408, 609-618.	3.7	9
61	Nitrone-Modified Gold Nanoparticles: Synthesis, Characterization, and Their Potential as ¹⁸ F-Labeled Positron Emission Tomography Probes via I-SPANC. ACS Omega, 2019, 4, 19106-19115.	3.5	9
62	Controlling the Structure, Properties and Surface Reactivity of Clickable Azideâ€Functionalized Au ₂₅ (SR) ₁₈ Nanocluster Platforms Through Regioisomeric Ligand Modifications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
63	$\hat{l}\pm$ -Diazo ketone self-assembled monolayer modified electrode: a proposed photoreactive template for electrode derivatisation. Chemical Communications, 1999, , 839-840.	4.1	8
64	Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules. Analyst, The, 2015, 140, 7278-7282.	3.5	7
65	NHC Ligated Group 11 Metal-Arylthiolates Containing an Azide Functionality Amenable to "Click― Reaction Chemistry. Inorganic Chemistry, 2018, 57, 11184-11192.	4.0	7
66	Investigation of Au SAMs Photoclick Derivatization by PM-IRRAS. Langmuir, 2020, 36, 1014-1022.	3.5	7
67	Photoactivated Nitrene Chemistry to Prepare Gold Nanoparticle Hybrids with Carbonaceous Materials. ChemPhysChem, 2012, 13, 3185-3193.	2.1	6
68	Bombesinâ€functionalized waterâ€soluble gold nanoparticles for targeting prostate cancer. Journal of Interdisciplinary Nanomedicine, 2017, 2, 174-187.	3.6	6
69	Regioselective S—O vs. C—O bond cleavage in sulfenate ester radical anions. Canadian Journal of Chemistry, 2005, 83, 1473-1482.	1.1	5
70	Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters. Molecules, 2014, 19, 11999-12010.	3.8	5
71	High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy. Canadian Journal of Chemistry, 2015, 93, 51-59.	1.1	5
72	Chemoselective photochemical surface reactionÂâ€" Ketene versus carbene reactivity from the photolysis of saturated monolayers of pyridyl diazoesters on single-crystal Pt. Canadian Journal of Chemistry, 2011, 89, 117-121.	1.1	4

#	Article	IF	Citations
73	7 Reaction mechanisms. Part (iv) Radical and radical ion reactions. Annual Reports on the Progress of Chemistry Section B, 2001, 97, 345-392.	0.9	3
74	Interfacial ketene via the photo-Wolff rearrangement for the modification of monolayer protected gold nanoparticles. Journal of Physical Organic Chemistry, 2013, 26, 601-607.	1.9	3
75	Photolysis and Thermolysis of Pyridyl Carbonyl Azide Monolayers on Singleâ€Crystal Platinum. Photochemistry and Photobiology, 2013, 89, 1020-1028.	2.5	3
76	6a€ fa € f Reaction mechanisms : Part (iii) Radical and radical ion reactions. Annual Reports on the Progress of Chemistry Section B, 2002, 98, 317-357.	0.9	2
77	Synthesis of small water-soluble diazirine-functionalized gold nanoparticles and their photochemical modification. Canadian Journal of Chemistry, 2015, 93, 98-105.	1.1	2
78	ZnII and CdII Ferrocenechalcogenolate Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 372-377.	2.0	2
79	9â€fReaction mechanisms. Annual Reports on the Progress of Chemistry Section B, 2000, 96, 399-443.	0.9	1
80	An Azide-Functionalized Nitronyl Nitroxide Radical: Synthesis, Characterization and Staudinger–Bertozzi Ligation Reactivity. Synlett, 2016, 27, 304-308.	1.8	1
81	Kinetics of the photoinduced dissociative reduction of the model alkyl peroxides di-tert-butyl peroxide and ascaridole. Mediterranean Journal of Chemistry, 2012, 1, 303-315.	0.7	1
82	Frontispiece: "Shine & Click―Photo―Induced Interfacial Unmasking of Strained Alkynes on Small Waterâ€Soluble Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, .	3.3	0
83	Strained alkyne polymers capable of SPAAC <i>via</i> ring-opening metathesis polymerization. Polymer Chemistry, 2021, 12, 5542-5547.	3.9	0
84	Controlling the Structure, Properties and Surface Reactivity of Clickable Azideâ€Functionalized Au25(SR)18 Nanocluster Platforms Through Regioisomeric Ligand Modifications. Angewandte Chemie, 0, , .	2.0	0